SYSTEMS ${ }^{\circ}$

Project	Gravity Wall Design - ASD	Project \# 20004.00

GRAVITY WALL DESIGN - ASD

STONE STRONG PRECAST MODULAR BLOCK

This engineering section presents information for design of Stone Strong retaining walls in a gravity configuration using conventional procedures with safety factors.

The design methodologies presented conform substantially to AASHTO specifications (Standard Specifications for Highway Bridges - 2002). This section includes the following documents:

Gravity Wall Design Methodology (15 pages)
Example Gravity Wall Calculations (9 pages)
Example Spreadsheet Output (12 pages)

The example calculations and example spreadsheet output match identical design conditions and are intended as verification of the spreadsheet method. Note that the Gravity Analysis Spreadsheet is available on the Stone Strong website.

Project	Gravity Wall Design Methodology	Project \# 20004.00

GRAVITY WALL DESIGN METHODOLOGY (ASD)

STONE STRONG PRECAST MODULAR BLOCK

Evaluate gravity retaining wall using allowable stress design approach following AASHTO and NCMA analytical techniques. Additional requirements, analytical methods, and theories are taken from the International Building Code, other AASHTO versions, and FHWA publications. Refer to:

AASHTO Standard Specifications for Highway Bridges 2002, 17 ${ }^{\text {th }}$ Edition
NCMA Design Manual for Segmental Retaining Wall, $3^{\text {rd }}$ Edition
FHWA Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines, NHI-00-043

International Building Code

Properties of Soil/Aggregate

Soil and material properties should be determined for the specific materials to be used:
unit fill $-\gamma_{u}=110 \mathrm{pcf}\left(17.3 \mathrm{kN} / \mathrm{m}^{3}\right)$ max (see AASHTO 5.9.2) \& ϕ_{u}
leveling base $-\gamma_{b} \& \phi_{b}$ for typical aggregate base (or concrete base may be substituted)
retained soil - $\gamma \& \phi$ by site conditions (where select backfill is used, select material must encompass entire retained soil influence zone)
foundation soil - $\gamma \phi$ \& c by site conditions
interface angle (see AASHTO 5.9.2)
For stepped modules, when the block width varies within a vertical section, $\delta=3 / 4 \phi$
For cases where all blocks are substantially uniform width, $\delta=1 / 2 \phi$
Note: infill weight is reduced to account for infill material not engaged by modular units in overturning. Only 80% of the weight of aggregate is included in the overturning calculations, W' (see AASHTO 5.9.2)

Project Gravity Wall Design Methodology				Project \# 20004.00			Date $2 / 20 / 20$	
Precast Modular Unit Geometric Properties					(not all units available from all dealers, verify availability)			
Block Library - Imperial Units					(not all units available from all dealers, verify availability)			
Block Type	Description	Conc. Wt. (lbs)	Void Vol. (ft ${ }^{3}$)	Length (ft)	Height (ft)	Unit Width (in)	Conc. Cen. of Gravity x_{b} (in)	Void Cen. of Gravity X_{a} (in)
6-28	6SF-28 unit (6 square feet)	950	6.65	4	1.50	28	12.8	14.0
6SF	$\begin{aligned} & \text { 6SF unit } \\ & \text { (6 square feet) } \end{aligned}$	1,500	10.95	4	1.50	44	21.0	23.5
24SF	24SF unit (24 square feet)	6,000	43.21	8	3.00	44	21.2	24.8
24-ME	24SF Mass Extender unit	10,000	44.94	8	3.00	56	32.7	25.8
24-62	24SF-62 unit	6,800	76.05	8	3.00	62	29.1	33.0
24-86	24SF-86 unit	7,600	117.90	8	3.00	86	40.0	45.1

dimensions are for battered units - for vertical face 24SF units, the width and center of gravity dimensions are all reduced by 1 inch

Block Library - Metric Units					(not all units available from all dealers, verify availability)			
Block Type	Description	Conc. Wt. (kN)	Void Vol. $\left(m^{3}\right)$	Length (m)	Height (m)	Unit Width (mm)	Conc. Cen. of Gravity x_{b} (mm)	Void Cen. of Gravity $x_{a}(\mathrm{~mm})$
6-28	6SF-28 unit (6 square feet)	4.23	0.19	1.22	0.46	711	324	356
6SF	6SF unit (6 square feet)	6.67	0.31	1.22	0.46	1,118	533	597
24SF	24SF unit (24 square feet)	26.69	1.22	2.44	0.91	1,118	538	630
24-ME	24SF Mass Extender unit	44.48	1.28	2.44	0.91	1,422	831	655
24-62	24SF-62 unit	30.25	2.16	2.44	0.91	1,575	739	838
24-86	24SF-86 unit	33.8	3.35	2.44	0.91	2,184	1,016	1,146

dimensions are for battered units - for vertical f 24SF units, the width and center of gravity dimensions are all reduced by 25 mm

Wall stability calculations are performed per unit length of wall, so all weights and forces are expressed per foot or m of wall length.

Project Gravity Wall Design Methodology	Project \# 20004.00	Date $2 / 20 / 20$

Typical gravity wall configuration, variables, and nomenclature:

Note that surcharge loads over the top of the wall are a stabilizing force and are neglected as conservative.

STRロNG

Project Gravity Wall Design Methodology	Project \# 20004.00	Date $2 / 20 / 20$

Typical gravity wall configuration, variables, and nomenclature:

Project Gravity Wall Design Methodology	Project \# 20004.00	Date $2 / 20 / 20$

Wall units that vary in width are referred to as "stepped" modules. Wider wall units are typically placed at the bottom of the wall. In addition to using wider precast units, the stability of a gravity wall can be improved by using cast-in-place tail extensions to increase the width of the units. The width of the CIP extension is not limited, but it is recommend that the height be at least 2 times the width to provide shear through the tail openings (unless connecting with reinforcing steel).

Wall batter

In common applications, the block units are installed in a battered configuration. In a typical batter, the $24 \mathrm{SF}, 24-62,24-86$, and $24-\mathrm{ME}$ units are 36 inches (914 mm) high and the next block atop a 24 SF block will batter back 4 inches (102 mm). The 6 SF and $6-28$ units are 18 inches (457 mm) tall, and the next block atop a 6 SF block will batter 2 inches (51 mm). These blocks may be interchanged within a wall stack, but the batter is determined by the height of the unit below.

$$
\begin{array}{ll}
4 \text { in. setback per } 24 \text { SF block (36 in. tall) } & 102 \mathrm{~mm} \text { setback per 24SF block (} 914 \mathrm{~mm} \text { tall) } \\
2 \text { in. setback per } 6 \text { SF block (18 in. tall) } & 51 \mathrm{~mm} \text { setback per } 6 \text { SF block (} 457 \mathrm{~mm} \text { tall) }
\end{array}
$$

The face batter is calculated as:

$$
\begin{array}{ll}
\omega=\arctan (4 / 36)=6.34^{\circ} & \omega=\arctan (102 / 914)=6.34^{\circ} \\
\text { or } \omega=\arctan (2 / 18)=6.34^{\circ} & \omega=\arctan (51 / 457)=6.34^{\circ}
\end{array}
$$

In some applications, the units may be installed with no batter to create a vertical face, $\omega=0^{\circ}$

For uniform modules, the batter of the back face matches the batter of the front face. For stepped modules, the batter is recalculated along the back of the wall from the rear of the bottom unit to the rear of the top of the wall. Use ω^{\prime} in Coulomb equation and earth pressure component calculations. To calculate ω^{\prime} it is necessary to know the effective setback width, w_{s}, which is the horizontal distance between the back edge of the top block and the back edge of the lower unit including any tail extension. w_{s} is negative when the mass extender projects further than the back of the top block. Knowing this distance and the height of wall:

$$
\omega^{\prime}=\arctan \left(\mathrm{w}_{\mathrm{s}} / \mathrm{H}_{\mathrm{w}}\right)
$$

Base Thickness/Embedment

The type and thickness of wall base or leveling pad and depth of embedment can vary by site requirements. A granular base with a thickness of 9 inches (225 mm) is commonly used, but the thickness can be adjusted to reduce the contact pressure. A concrete leveling pad or footing can also be used. The required embedment to the top of the base is related to the exposed height of the wall and by the slope at the toe, as well as other factors. The required embedment can be calculated for slopes steeper than $6 \mathrm{H}: 1 \mathrm{~V}$ using the following equation:

$$
h_{e}=H^{\prime} /\left(20^{*} \mathrm{~S} / 6\right)
$$

where S is the run of the toe slope per unit fall and H^{\prime} is the exposed height of the wall

A minimum embedment of 6 to 9 inches (150 to 225 mm) is recommended for private projects. A minimum embedment of 20 inches (500 mm) or more may be required for roadway applications

Project	Gravity Wall Design Methodology	Project \# 20004.00	Date $2 / 20 / 20$

Weight of Wall

The weight of the wall includes the contributions of the blocks, the aggregate unit fill, the tail extension, and the soil wedge atop extended modules or tail extension

The weight of the tail extension is calculated:

$$
\mathrm{W}_{\mathrm{te}}=\left(\mathrm{w}_{\mathrm{te}} * \mathrm{H}_{\mathrm{te}}\right) * 145 \mathrm{pcf}\left(22.8 \mathrm{kN} / \mathrm{m}^{3}\right)
$$

where w_{te} is the width of the tail extension and H_{te} is the height of the extension (both in ft .)

The angle of the batter (from vertical) of the soil wedge above the tail extension, ω_{s}, is calculated:

$$
\omega_{s}=\arctan \left(-w_{s}^{\prime} / H_{\text {wedge }}\right)
$$

The weight of soil in the wedge above the tail extension is calculated for the trapezoidal area of the wedge that lies behind each block
$h_{s}=$ height of the soil trapezoid behind the block (may differ from height of the block)
$\mathrm{w}_{\mathrm{u}}=$ width of the block
$\mathrm{h}_{1}=$ dist. from the top of wall to top of the soil trapezoid behind the block
$h_{2}=$ dist. from the top of wall to bottom of the soil trapezoid behind the block
$s=$ dist. from the face of wall to face of the block
$s_{u}=$ dist. from the face of wall to back of the block $=s+w_{u}$
$\mathrm{S}_{\mathrm{T}}=$ dist. from the face of wall to the back of top-most block of wall
$\mathrm{b}_{1}=$ length of top side of trapezoid of soil behind block $=\mathrm{h}_{1}{ }^{*} \tan \left(\omega_{\mathrm{s}}\right)+\left(\mathrm{S}_{\mathrm{T}}-\mathrm{S}_{\mathrm{u}}\right)$
$\mathrm{b}_{2}=$ length of bottom side of trapezoid of soil behind block $=\mathrm{h}_{2}{ }^{*} \tan \left(\omega_{\mathrm{s}}\right)+\left(\mathrm{S}_{\mathrm{T}}-\mathrm{S}_{\mathrm{u}}\right)$

The weight of the soil wedge above the tail extension behind each block, W_{s}, is calculated as the trapezoidal area multiplied by the lesser of the unit weight of the retained soil or the unit fill:

$$
\mathrm{W}_{\mathrm{s}}=\left[\mathrm{h}_{\mathrm{s}} *\left(\mathrm{~b}_{1}+\mathrm{b}_{2}\right) / 2\right] *\left(\min \text { of } \gamma_{\mathrm{ret}} \text { or } \gamma_{\mathrm{u}}\right)
$$

The center of gravity of the trapezoidal wedge behind each block, measured from the face of the wall at the bottom course, is calculated:

$$
\begin{aligned}
& x_{s}=\left[\left(b_{1}{ }^{*} b_{2}+\left(b_{2}{ }^{2}-2^{*} b_{1}{ }^{*} b_{2}+b_{1}{ }^{2}\right) / 3\right) /\left(b_{1}+b_{2}\right)\right]+s+w_{u} \\
& y_{s}=\left[h_{s} / 3^{*}\left(2 b_{1}+b_{2}\right) /\left(b_{1}+b_{2}\right)\right]+H-h_{2}
\end{aligned}
$$

W_{s} is treated as aggregate infill subject to 80% limitations for overturning calculations (conservative)

Project \# 20004.00	Date

Static Forces

Coulomb active earth pressure coefficient (see AASHTO 5.5.2-1)

$$
\mathrm{K}_{\mathrm{a}}=\frac{\cos ^{2}\left(\phi+\omega^{\prime}\right)}{\cos ^{2}\left(\omega^{\prime}\right) \cos \left(\omega^{\prime}-\delta\right)\left[1+\sqrt{\frac{\sin (\phi+\delta) \sin (\phi-\beta)}{\cos \left(\omega^{\prime}-\delta\right) \cos \left(\omega^{\prime}+\beta\right)}}\right]^{2}}
$$

As an alternate, a trial wedge technique may be used to determine the earth pressure forces acting on the modular wall.

Earth Load Components (see AASHTO 5.5.2-1)
Vertical forces:

$$
\begin{aligned}
& P_{v}=0.5 \mathrm{~K}_{\mathrm{a}} \gamma \mathrm{H}^{2 *} \sin \left(\delta-\omega^{\prime}\right) \\
& \mathrm{Q}_{\mathrm{lv}}=\mathrm{K}_{\mathrm{a}} Q \mathrm{H}^{*} \sin \left(\delta-\omega^{\prime}\right) \text { where } Q \text { is the effective surcharge in } \mathrm{psf}(\mathrm{kPa})
\end{aligned}
$$

Horizontal forces:

$$
\begin{aligned}
& P_{h}=0.5 K_{a} \gamma H^{2 *} \cos \left(\delta-\omega^{\prime}\right) \\
& Q_{l h}=K_{a} Q H^{*} \cos \left(\delta-\omega^{\prime}\right) \text { where } Q \text { is the effective surcharge in psf }(\mathrm{kPa})
\end{aligned}
$$

Resultants of earth load components:

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{P}}=\mathrm{H} / 3 \\
& \mathrm{x}_{\mathrm{P}}=(\mathrm{H} / 3)^{*} \tan \left(\omega^{\prime}\right)+\mathrm{w}_{\mathrm{u}} \\
& \mathrm{y}_{\mathrm{Ql}}=\mathrm{H} / 2 \\
& \mathrm{x}_{\mathrm{Ql}}=(\mathrm{H} / 2)^{*} \tan \left(\omega^{\prime}\right)+\mathrm{w}_{\mathrm{u}}
\end{aligned}
$$

where w_{u} is the width of the bottom unit, including any tail extension $\left(\mathrm{w}_{\text {te }}\right)$

Weight Components

Vertical forces:
W_{b} - Weight of wall units
$W_{\text {te }}$ - Weight of concrete tail extension, if used
W_{a} - Weight of infill aggregate (use 80\% aggregate weight for overturning)
W_{s} - Weight of soil atop tail extension (use 80% aggregate weight for overturning)

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{b}}=\sum\left(\mathrm{W}_{\mathrm{b} 1}+\mathrm{W}_{\mathrm{b} 2}+\cdots \cdot+\mathrm{W}_{\mathrm{bn}}\right) \\
& \mathrm{W}_{\mathrm{te}}=\Sigma\left(\mathrm{W}_{\mathrm{te} 1}+\mathrm{W}_{\mathrm{te} 2}+\cdots \cdots+\mathrm{W}_{\mathrm{te}}\right) \\
& \mathrm{W}_{\mathrm{a}}=\sum\left(\mathrm{W}_{\mathrm{a} 1}+\mathrm{W}_{\mathrm{a} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{an}}\right) \\
& \mathrm{W}_{\mathrm{s}}=\sum\left(\mathrm{W}_{\mathrm{s} 1}+\mathrm{W}_{\mathrm{s} 2}+\cdots \cdot++\mathrm{W}_{\mathrm{sn}}\right)
\end{aligned}
$$

Resultants of weight components:

The center of mass of the stack of blocks is calculated as:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{b}}=\sum\left(\mathrm{W}_{\mathrm{b} 1}{ }^{*} \mathrm{x}_{\mathrm{b} 1}+\mathrm{W}_{\mathrm{b} 2}{ }^{*} \mathrm{X}_{\mathrm{b} 2}+\cdots \cdot+\mathrm{W}_{\mathrm{bn}}{ }^{*} \mathrm{x}_{\mathrm{bn}}\right) / \sum\left(\mathrm{W}_{\mathrm{b} 1}+\mathrm{W}_{\mathrm{b} 2}+\cdots \cdot+\mathrm{W}_{\mathrm{bn}}\right) \\
& \mathrm{y}_{\mathrm{b}}=\sum\left(\mathrm{W}_{\mathrm{b} 1}{ }^{*} \mathrm{y}_{\mathrm{b} 1}+\mathrm{W}_{\mathrm{b} 2}{ }^{*} \mathrm{y}_{\mathrm{b} 2}+\cdots \cdots+\mathrm{W}_{\mathrm{bn}}{ }^{*} \mathrm{y}_{\mathrm{bn}}\right) / \sum\left(\mathrm{W}_{\mathrm{b} 1}+\mathrm{W}_{\mathrm{b} 2}+\cdots \cdot+\mathrm{W}_{\mathrm{bn}}\right)
\end{aligned}
$$

The center of mass of the aggregate fill is:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{a}}=\sum\left(\mathrm{W}_{\mathrm{a} 1}{ }^{*} \mathrm{x}_{\mathrm{a} 1}+\mathrm{W}_{\mathrm{a} 2}{ }^{*} \mathrm{x}_{\mathrm{a} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{an}}{ }^{*} \mathrm{x}_{\mathrm{an}}\right) / \sum\left(\mathrm{W}_{\mathrm{a} 1}+\mathrm{W}_{\mathrm{a} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{an}}\right) \\
& \mathrm{y}_{\mathrm{a}}=\sum\left(\mathrm{W}_{\mathrm{a} 1}{ }^{*} \mathrm{y}_{\mathrm{a} 1}+\mathrm{W}_{\mathrm{a} 2}{ }^{*} \mathrm{y}_{\mathrm{a} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{an}}{ }^{*} \mathrm{y}_{\mathrm{an}}\right) / \sum\left(\mathrm{W}_{\mathrm{a} 1}+\mathrm{W}_{\mathrm{a} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{an}}\right)
\end{aligned}
$$

The center of mass of the soil wedge over the tail is:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{s}}=\sum\left(\mathrm{W}_{\mathrm{s} 1}{ }^{*} \mathrm{x}_{\mathrm{s} 1}+\mathrm{W}_{\mathrm{s} 2}{ }^{*} \mathrm{x}_{\mathrm{s} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{sn}}{ }^{*} \mathrm{x}_{\mathrm{sn}}\right) / \sum\left(\mathrm{W}_{\mathrm{s} 1}+\mathrm{W}_{\mathrm{s} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{sn}}\right) \\
& \mathrm{y}_{\mathrm{s}}=\sum\left(\mathrm{W}_{\mathrm{s} 1}{ }^{*} \mathrm{y}_{\mathrm{s} 1}+\mathrm{W}_{\mathrm{s} 2}{ }^{*} \mathrm{y}_{\mathrm{s} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{sn}}{ }^{*} \mathrm{y}_{\mathrm{sn}}\right) / \sum\left(\mathrm{W}_{\mathrm{s} 1}+\mathrm{W}_{\mathrm{s} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{sn}}\right)
\end{aligned}
$$

The center of mass of the tail extension can be calculated with the following equation:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{te}}=\sum\left(\mathrm{W}_{\mathrm{te} 1}{ }^{*} \mathrm{X}_{\mathrm{te} 1}+\mathrm{W}_{\mathrm{te2}}{ }^{*} \mathrm{x}_{\mathrm{te} 2}+\cdots \cdot+\mathrm{W}_{\mathrm{ten}}{ }^{*} \mathrm{X}_{\mathrm{ten}}\right) / \sum\left(\mathrm{W}_{\mathrm{te} 1}+\mathrm{W}_{\mathrm{te} 2}+\cdots \cdot+\mathrm{W}_{\mathrm{te}}\right) \\
& \mathrm{y}_{\mathrm{te}}=\sum\left(\mathrm{W}_{\mathrm{te} 1}{ }^{*} \mathrm{y}_{\mathrm{te} 1}+\mathrm{W}_{\mathrm{te} 2}{ }^{*} \mathrm{y}_{\mathrm{te} 2}+\cdots \cdots+\mathrm{W}_{\mathrm{ten}}{ }^{*} \mathrm{y}_{\mathrm{ten}}\right) / \sum\left(\mathrm{W}_{\mathrm{te} 1}+\mathrm{W}_{\mathrm{te} 2}+\cdots \cdots+\mathrm{W}_{\mathrm{te}}\right)
\end{aligned}
$$

The overall adjusted center of mass of the blocks and tail extension:

$$
\begin{aligned}
& x_{b+t e}=\left(W_{b}{ }^{*} x_{b}+W_{t e}^{*} x_{t e}\right) /\left(W_{b}+W_{t e}\right) \\
& y_{\mathrm{b}+\mathrm{te}}=\left(\mathrm{W}_{\mathrm{b}}{ }^{*} y_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}{ }^{*} \mathrm{y}_{\mathrm{te}}\right) /\left(\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}\right)
\end{aligned}
$$

The overall adjusted center of mass of the aggregate and the soil above the tail is:

$$
\begin{aligned}
& x_{a+s}=\left(W_{a}^{*} x_{a}+W_{s}^{*} x_{s}\right) /\left(W_{a}+W_{s}\right) \\
& y_{a+s}=\left(W_{a}^{*} y_{a}+W_{s}^{*} y_{s}\right) /\left(W_{a}+W_{s}\right)
\end{aligned}
$$

Project	Gravity Wall Design Methodology	Project \# 20004.00	Date $2 / 20 / 20$

Seismic Loads

Seismic components of force are calculated according to the procedures in FHWA 4.2h.
The maximum acceleration $A_{m}=(1.45-A)^{*} A$ where A is the peak horizontal ground acceleration.

The seismic earth pressure coefficient is calculated with the following equation:

$$
\begin{aligned}
& K_{a e}=\frac{\cos ^{2}\left(\phi+\omega^{\prime}-\xi\right)}{\cos (\xi) \cos ^{2}\left(-\omega^{\prime}\right) \cos \left(\delta-\omega^{\prime}+\xi\right)\left[1+\sqrt{\frac{\sin (\phi+\delta) \sin (\phi-\xi-\beta)}{\cos \left(\delta-\omega^{\prime}+\xi\right) \cos \left(\omega^{\prime}+\beta\right)}}\right]^{2}} \\
& \text { where } \xi=\arctan \left[\mathrm{k}_{h} /\left(1-\mathrm{k}_{\mathrm{v}}\right)\right]
\end{aligned}
$$

The trial wedge technique is recommended in high seismicity regions to determine the dynamic thrust forces acting on the modular wall.

Seismic Earth load components

k_{v} is generally taken as $0 . \mathrm{k}_{\mathrm{h}}$ is the maximum horizontal acceleration of the wall, and is a function of the maximum allowable displacement of the wall during a seismic event. It is calculated with the following equation:

$$
\mathrm{k}_{\mathrm{h}}=1.66 * \mathrm{~A}_{\mathrm{m}} *\left[\mathrm{~A}_{\mathrm{m}} /\left(\mathrm{d}^{*} \mathrm{C}\right)\right]^{0.25}
$$

d is the maximum horizontal displacement, and is typically set at 2 inches (50 mm) as conservative. Note that this equation has embedded units of mm , and C is a conversion factor (25.4 when d is in units of inches, and 1 when d is in units of mm).

$$
\mathrm{A}_{\mathrm{m}}=(1.45-\mathrm{PGA})^{*} \mathrm{PGA}
$$

Note that when PGA is not provided, it can be calculated from seismic response values provided in the International Building Code. IBC 1802.2.7 allows for PGA to be taken as $\mathrm{S}_{\mathrm{DS}} / 2.5$. Following IBC Eq. 16-37 and 16-39:

$$
\mathrm{PGA}=0.267{ }^{*} \mathrm{~S}_{\mathrm{s}} \mathrm{~F}_{\mathrm{a}}
$$

The horizontal inertial force $P_{\text {ir }}$ is calculated as follows:

$$
\mathrm{P}_{\mathrm{ir}}=\left(\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}+\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)^{*} \mathrm{k}_{\mathrm{h}}
$$

The seismic thrust is calculated as follows:

$$
\begin{aligned}
& \Delta \mathrm{P}_{\mathrm{ae}}=0.5^{*} \gamma^{*} \mathrm{H}^{2} *\left(\mathrm{~K}_{\mathrm{ae}}-\mathrm{K}_{\mathrm{a}}\right) \\
& \Delta \mathrm{P}_{\mathrm{aeh}}=0.5^{*} \gamma^{*} \mathrm{H}^{2} *\left(\mathrm{~K}_{\mathrm{ae}}-\mathrm{K}_{\mathrm{a}}\right)^{*} \cos \left(\delta-\omega^{\prime}\right) \\
& \Delta \mathrm{P}_{\mathrm{aev}}=0.5^{*} \gamma^{*} \mathrm{H}^{2} *\left(\mathrm{~K}_{\mathrm{ae}}-\mathrm{K}_{\mathrm{a}}\right)^{*} \sin \left(\delta-\omega^{\prime}\right)
\end{aligned}
$$

Resultants of Seismic Earth load components

In overturning analysis, the inertial force is applied at the vertical center of gravity of the wall, while the seismic thrust is applied at 60% of the wall height.

Project	Gravity Wall Design Methodology	Project\# 20004.00	Date $2 / 20 / 20$
$\mathrm{y}_{\text {Pae }}=0.6{ }^{*} \mathrm{H}$			
$\mathrm{X}_{\text {Pae }}=0.6^{*} \mathrm{H}^{*} \tan \left(\omega^{\prime}\right)+\mathrm{w}_{u}$			
$\mathrm{y}_{\text {Pir }}=\left(\mathrm{W}_{\mathrm{b}}{ }^{*} \mathrm{y}_{\mathrm{b}}+\mathrm{W}_{\text {te }}{ }^{*} \mathrm{y}_{\mathrm{te}}+\mathrm{W}_{\mathrm{a}}{ }^{*} \mathrm{y}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}{ }^{*} \mathrm{y}_{\mathrm{s}}\right) /\left(\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\text {te }}+\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$			

Since the inertial and thrust forces are generally not in sync and do not peak simultaneously, the full inertial force is applied along with 50% of the seismic thrust (FHWA 4.2h).
Stability including seismic load conditions should be separately verified for sliding, overturning/eccentricity, and bearing. Live loads are typically excluded from seismic analysis.

Base Friction

Friction across the base of the wall is used to resist sliding failure. Frictional resistance must be determined both between the wall assembly and the base and between the base and the foundation soil (or through the foundation soil).

The sliding resistance is calculated as the smaller result of the following equations:
For base to foundation soil failure, use:
$\mathrm{R}_{\mathrm{s} \text { (foundation soil) }}=\left(\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}+\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}+\mathrm{P}_{\mathrm{v}}+\mathrm{W}_{\mathrm{u}}{ }^{*} \mathrm{t}_{\mathrm{b}}{ }^{*} \gamma_{\mathrm{b}}\right) \tan \phi+\mathrm{B}_{\mathrm{w}}{ }^{*} \mathrm{C}$
where ϕ represents foundation soil friction angle, B_{w} is base width (bottom block width including any tail extension plus $1 / 2 \mathrm{H}: 1 \mathrm{~V}$ distribution through base), and c represents foundation soil cohesion. The weight of the base is included in the wall weight.

For block to base material sliding, use:

$$
R_{\mathrm{s}(\text { footing })}=\mu_{\mathrm{b}}\left(\mathrm{~W}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}+\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}+\mathrm{P}_{\mathrm{v}}\right)
$$

where μ_{b} represents a composite coefficient of friction for the base

The composite friction coefficient is calculated using contributory areas. The base of a Stone Strong unit consists of a percentage of open void space to be filled with aggregate and a percentage of concrete. These percentages are calculated as follows:
$\%$ void $=\mathrm{V}_{\text {void }} /\left(\mathrm{V}_{\text {void }}+\mathrm{V}_{\text {concrete }}\right)$
$\%_{\text {concrete }}=\mathrm{V}_{\text {concrete }} /\left(\mathrm{V}_{\text {void }}+\mathrm{V}_{\text {concrete }}\right)$

If a tail extension is used, the area of the tail extension must also be calculated and the total area is also increased accordingly. Thus, the equation for composite friction coefficient across the base becomes:
$\mu_{\mathrm{b}}=\left(\%\right.$ void $\left.^{*} \mathrm{~W}_{\mathrm{u}(\text { bottom })}{ }^{*} \mu_{\mathrm{p}-\text { unit fillbase }}+\%_{\text {concrete }}{ }^{*} \mathrm{~W}_{\mathrm{u}(\text { bottom })}{ }^{*} \mu_{\mathrm{p} \text { - blocklbase }}+\mathrm{w}_{\mathrm{te}}{ }^{*} \mu_{\mathrm{p}-\text { extension/base })}\right) /\left(\mathrm{w}_{\mathrm{u}(\text { bottom })}+\mathrm{w}_{\mathrm{te}}\right)$

Partial friction coefficients can be interpreted from the following table:

	Coefficient of Friction
Block to Aggregate Base formed precast surface on compacted aggregate surface (includes Mass Extender)	$0.8^{\star t}$ tan ϕ_{b}
Unit Fill to Aggregate Base screened aggregate (loose to moderate relative density - dumped) on compacted aggregate surface	Iower tan ϕ_{b} or tan ϕ_{u}
Block to Concrete Base formed precast surface on floated concrete surface (includes Mass Extender)	0.60
Unit Fill Aggregate to Concrete Base screened aggregate (loose to moderate relative density - dumped) on floated concrete surface	0.8^{*} tan ϕ_{u}
Concrete Tail Extension to Aggregate Base cast in place concrete on aggregate surface	tan ϕ_{b}
Concrete Tail Extension to Concrete Base cast in place concrete on floated concrete surface	0.75
Concrete Tail Extension Directly on Foundation Soil (Sand) cast in place concrete on granular soil	tan ϕ_{f}
Note:	These typical values may be used for evaluation of base sliding at the discretion of the user. The licensed engineer of record is responsible for all design input and for evaluating the reasonableness of calculation output based upon his/her knowledge of local materials and practices and on the specific design details.

Since the unit fill aggregate is typically placed to a moderately loose state, the friction angle for the screened unit fill aggregate typically controls for the interface between the unit fill and the base aggregate.
If actual test data for the project specific materials is not available, or for preliminary design, the following conservative friction angles are suggested for base and infill aggregates:

	Friction Angle (degrees)		
Crushed Hard Aggregate $>75 \%$ w/ 2 fractured faces, hard natural rock	42	40	36
Crushed Aggregate $>75 \% \mathrm{w} / 2$ fractured faces, medium natural rock or recycled concrete	40	38	35
Cracked Gravel >90\% w/ 1 fractured face	36	35	32
Note: Physical testing of specific aggregates is recommended. When test data is not available, these typical values may be used at the discretion of the user. The licensed engineer of record is responsible for all design input and for evaluating the reasonableness of calculation output based upon his/her knowledge of local materials and practices and on the specific design details.			

Project Gravity Wall Design Methodology	Project\# 20004.00	Date $2 / 20 / 20$

Table of Forces \& Moments

	Force (lb) or (kN)	Arm (ft) or (m)	Moment about toe (lb*ft) or (kN *m)
Vertical Forces			
weight of blocks	$\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\text {te }}$	$\mathrm{x}_{\mathrm{b}+\mathrm{te}}$	$\left(\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\text {te }}\right)^{*} \mathrm{x}_{\mathrm{b}+\mathrm{te}}$
weight of agg. \& soil over tail	$\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}$	$\mathrm{x}_{\mathrm{a}+\mathrm{s}}$	$\left(W_{a}+W_{s}\right)^{*} x_{\text {ats }}$
modified weight of a \& s (80\%)	$0.8 *\left(W_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$	$\mathrm{x}_{\mathrm{a}+\mathrm{s}}$	$0.8{ }^{*}\left(\mathrm{Wa}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)^{*} \mathrm{X}_{\mathrm{a}+\mathrm{s}}$
earth pressure	P_{v}	XP_{P}	$\mathrm{P}_{\mathrm{v}}{ }^{*} \mathrm{x}_{\mathrm{P}}$
seismic thrust	$\mathrm{Paev}^{\text {/ } / 2}$	$\mathrm{X}_{\text {Pae }}$	$\mathrm{Paen} / 2{ }^{*} \mathrm{XPae}$
LL surcharge	Q_{1}	x_{Q}	$\mathrm{Q}_{1 /}{ }^{*} \mathrm{X}_{\mathrm{Ql}}$
Horizontal Forces			
earth pressure	P_{h}	Yph	$\mathrm{Ph}^{*}{ }^{\text {y }}$ Ph
seismic thrust	$\Delta \mathrm{P}_{\text {aeh }} / 2$	yPae	$\Delta \mathrm{Paeh}_{\text {aeh }} / 2{ }^{*} \mathrm{yPae}$
inertial force	Pir	Ypir	$\mathrm{P}_{\text {ir }}{ }^{*} \mathrm{y}_{\text {Pir }}$
LL surcharge	Q_{nh}	YQ	$\mathrm{Qlh}^{\text {* }}{ }^{\text {¢ }}$ Q\|

Project \# 20004.00	Date

Overturning

For overturning, the modified weights using 80% of the aggregate weight (including the soil over the tail extension) are used for all overturning calculations.

$M^{\prime} v$	Σ moments from vertical forces (using $80 \% W_{s} \& W_{a}$)
M_{H}	Σ moments from horizontal forces
FS	M^{\prime} / M_{H}

The overturning safety factor should be greater than 1.5 for private projects (NCMA 4.3 and IBC 1806.1). A minimum safety factor of 2.0 may be required for highway applications (AASHTO 5.5.5). check that FS > 1.5 with static earth pressure loads and surcharge loads

Safety factors are typically reduced 25% for seismic loading due to the extreme nature of these events. Surcharge loads are generally not applied concurrent with seismic loads.
check that FS > 1.13 with static earth pressure loads and seismic loads

Sliding

The minimum value for sliding resistance is calculated as follows:

F_{H}	Σ horizontal forces
F_{V}	Σ vertical forces (using $\left.100 \% \mathrm{~W}_{\mathrm{s}} \& \mathrm{~W}_{\mathrm{a}}\right)$
$\mathrm{R}_{\mathrm{s} \text { (footing) }}$	$\mu_{\mathrm{b}} \mathrm{F}_{\mathrm{V}}$
$\mathrm{R}_{\mathrm{s} \text { (foundation soil) }}$	$\left(\mathrm{F}_{\mathrm{V}}+\mathrm{t}_{\mathrm{b}}{ }^{*} \mathrm{~W}_{\mathrm{b}}{ }^{*} \gamma_{\mathrm{b}}{ }^{*} \tan (\phi)+\mathrm{B}_{\mathrm{w}}{ }^{*} \mathrm{C}\right.$
$\min \mathrm{R}_{\mathrm{s}}$	smaller of $\mathrm{R}_{\mathrm{s} \text { (footing) }}$ or $\mathrm{R}_{\mathrm{s} \text { (foundation soil) }}$
FS	$\min \mathrm{R}_{\mathrm{s}} / \mathrm{F}_{\mathrm{H}}$

The safety factor for sliding should be greater than 1.5
check that FS >1.5 with static earth pressure loads and surcharge loads check that FS > 1.13 with static earth pressure loads and seismic loads

Project \# 20004.00	Date $2 / 20 / 20$

Bearing/Eccentricity

B_{f}^{\prime} is the equivalent bearing area. This is the base block width adjusted for eccentricity, and including a $1 / 2 \mathrm{H}: 1 \mathrm{~V}$ distribution through granular base or $1 \mathrm{H}: 1 \mathrm{~V}$ distribution through concrete base.

$$
\mathrm{Bf}_{\mathrm{f}}^{\prime}=\mathrm{w}_{\mathrm{u}}+\mathrm{w}_{\mathrm{te}}+\mathrm{t}_{\mathrm{b}}-2^{*} \mathrm{e} \quad \text { or } \quad \mathrm{B}_{\mathrm{f}}^{\prime}=\mathrm{w}_{\mathrm{u}}+\mathrm{w}_{\mathrm{te}}+2^{*} \mathrm{t}_{\mathrm{b}}-2^{*} \mathrm{e} \text { (for concrete base) }
$$

F_{V}	Σ vertical forces (using $100 \% \mathrm{~W}_{\mathrm{s}}$ \& W_{a})
weight of base	$\mathrm{t}_{\mathrm{b}}{ }^{*} \gamma_{\mathrm{b}}$
M	Σ moments from vertical forces (using 100\% W $\mathrm{W}_{\text {s }}$ W W_{a})
M_{H}	Σ moments from horizontal forces
e	$\left(\mathrm{w}_{\mathrm{u}}+\mathrm{w}_{\text {te }}\right) / 2-\left(\mathrm{M}_{\mathrm{v}}-\mathrm{M}_{\mathrm{H}}\right) / \mathrm{F}_{\mathrm{V}}$
Bf^{\prime} (granular base)	$\mathrm{w}_{\mathrm{u}}+\mathrm{w}_{\text {te }}+\mathrm{t}_{\mathrm{b}}-2^{*} \mathrm{e}$
Bf_{f}^{\prime} (concrete base)	$\mathrm{w}_{\mathrm{u}}+\mathrm{w}_{\mathrm{te}}+2^{*} \mathrm{t}_{\mathrm{b}}-2^{*} \mathrm{e}$
contact pressure q_{c}	$\mathrm{F}_{\mathrm{V}} / \mathrm{Bf}^{\prime}+\mathrm{t}_{\mathrm{b}}{ }^{*} \gamma_{\mathrm{b}}$
bearing resistance $\mathrm{qut}^{\text {ut }}$	$\left[c^{*} \mathrm{~N}_{\mathrm{c}}+\left(\mathrm{h}_{\mathrm{e}}+\mathrm{t}_{\mathrm{b}}\right)^{*} \gamma_{\text {found }}{ }^{*} \mathrm{~N}_{\mathrm{q}}+0.5^{*} \gamma_{\text {found }}{ }^{*} \mathrm{Bf}_{\mathrm{f}}{ }^{*} \mathrm{~N}_{\gamma}\right]$
FS	$\mathrm{quit} / \mathrm{q}_{\mathrm{c}}$

The safety factor for bearing should be greater than 2
check that FS > 2.0 with static earth pressure loads and surcharge loads check that FS > 1.5 with static earth pressure loads and seismic loads

Project	Gravity Wall Design Methodology	Project \# 20004.00	Date $2 / 20 / 20$

Internal Analysis

Internal stability analysis is conducted for each section above the wall base. Since bearing conditions are addressed in the external stability analysis, only topping and shear failures are evaluated.

Toppling is evaluated similarly to external overturning analysis, except that the overturning point is set in 1 inch (25 mm) to account for face rounding.

$$
F S=M_{V}^{\prime} / M_{H}
$$

check that FS > 1.5 with static earth pressure loads and surcharge loads check that FS > 1.13 with static earth pressure loads and seismic loads

Shear, or sliding, resistance is calculated based on the interface shear test (see interaction test reports for complete test data)

$$
\mathrm{R}_{\mathrm{s}}=\left[\mathrm{S}_{\mathrm{i}}+\left(\mathrm{W}+\mathrm{P}_{\mathrm{v}}+\mathrm{Q}_{\mathrm{lv}}\right)^{*} \tan \left(35.2^{\circ}\right)\right]
$$

where $S_{i}=362 \mathrm{lb} / \mathrm{ft}$ or $5.28 \mathrm{kN} / \mathrm{m}$

$$
\mathrm{FS}=\mathrm{R}_{\mathrm{s}} / \mathrm{F}_{\mathrm{H}}
$$

check that FS > 1.5 with static earth pressure loads and surcharge loads check that FS > 1.13 with static earth pressure loads and seismic loads

At a minimum, internal stability should be evaluated at each change in block width (including any tail extension), at the base of any dual-face units, and for the top course(s) if a surcharge or lateral load is applied.

EXAMPLE GRAVITY WALL CALCULATIONS

ALLOWABLE STRESS METHOD USING IBC SAFETY FACTORS

Example 1: 13.5 feet tall wall, level back slope, 150 psf parking surcharge

Retained Soil: sand with $\gamma=120$ pcf and $\phi=30$ degrees
Foundation Soil: clay with $\gamma=125 \mathrm{pcf}, \phi=26$ degrees, and $c^{\prime}=150 \mathrm{psf}$
Infill Aggregate: screened crushed aggregate with $\gamma=110$ pcf and $\phi=35$ degrees
Base Aggregate: well graded crushed aggregate with $\gamma=125$ pcf and $\phi=40$ degrees

Project $A S D$ Example Calculations	Project\# 20004.00	Date $2 / 20 / 20$

Wall Configuration (all weights per foot along length of wall)

External Stability Analysis

Modular Units				Setback (in)		Concrete (/ft.)		Unit Fill (/ft.)		Soil Wedge (/ft.)	
unit	w (in)	h (ft)	face	tail	$\mathbf{W}_{\mathbf{b}}(\mathbf{l b})$	$\mathbf{x}_{\mathbf{b}}(\mathbf{i n})$	$\mathbf{W}_{\mathbf{a}}(\mathbf{l b})$	$\mathbf{x}_{\mathbf{a}}$ (in)	$\mathbf{W}_{\mathbf{s}}$ (lb)	$\mathbf{x}_{\mathbf{s}}$ (in)	
$6-28$	28.0	1.50	16.0	-42.0	238	28.8	183	30.0	63	47.1	
$6-28$	28.0	1.50	14.0	-44.0	238	26.8	183	28.0	217	50.1	
6	44.0	1.50	12.0	-30.0	375	33.0	301	35.5	151	61.8	
24	44.0	3.00	8.0	-34.0	750	29.2	594	32.8	792	66.9	
$24-86$	86.0	3.00	4.0	4.0	950	44.0	1,621	49.1	0	0.0	
$24-86$	86.0	3.00	0.0	0.0	950	40.0	1,621	45.1	0	0.0	

Weight and Center of Gravity of Wall Components
$\mathrm{W}_{\mathrm{b}}=950+950+750+375+238+238=3,500 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\mathrm{a}}=1,621+1,621+594+301+183+183=4,503 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\mathrm{s}}=792+151+217+63=1,224 \mathrm{lb} / \mathrm{ft}$
Total Wall Weight $=3,500+4,503+1,224=9,227 \mathrm{lb} / \mathrm{ft}$
$x_{b}=\left(950 * 40.0+950 * 44.0+750 * 29.2+375 * 33.0+238^{*} 26.8+238 * 28.8\right) / 3,500=36.4$ in
$x_{\mathrm{a}}=\left(1,621^{*} 45.1+1,621 * 49.1+594^{*} 32.8+301 * 35.5+183^{*} 28.0+183^{*} 30.0\right) / 4,503=43.0$ in
$x_{s}=\left(792^{*} 66.9+151 * 61.8+217^{*} 50.1+62 * 47.1\right) / 1,224=62.3$ in

Earth Pressure Components
$\omega^{\prime}=\arctan (-42 / 12 / 13.5)=-14.53^{\circ}$
$\delta=0.75^{*} 30=22.5^{\circ}$
$\mathrm{K}_{\mathrm{a}}=\frac{\cos ^{2}(30-14.53)}{\cos ^{2}(-14.53) \cos (-14.53-22.5)\left[1+\sqrt{\frac{\sin (30+22.5) \sin (30-0)}{\cos (-14.53-22.5) \cos (-14.53+0)}}\right]^{2}}$
$\mathrm{K}_{\mathrm{a}}=0.421$
$P_{h}=0.5^{*} 0.421^{*} 120^{*}(12.0)^{2 *} \cos (22.5+14.53)=3,679 \mathrm{lb}$
$P_{v}=0.5^{*} 0.421^{*} 120^{*}(12.0)^{2 *} \sin (22.5+14.53)=2,776 \mathrm{lb}$
$\mathrm{Q}_{\mathrm{lh}}=0.421^{*} 150 * 12.0^{*} \cos (22.5+14.53)=681 \mathrm{lb}$
$Q_{\mathrm{iv}}=0.421^{*} 150 * 12.0^{*} \sin (22.5+14.53)=514 \mathrm{lb}$
$X_{P}=(13.5 / 3)^{*} \tan (-14.53)+86 / 12=6.00 \mathrm{ft}$

$$
y_{P}=13.5 / 3=4.50 \mathrm{ft}
$$

$\mathrm{X}_{\mathrm{QI}}=(13.5 / 2)^{*} \tan (-14.53)+86 / 12=5.42 \mathrm{ft}$
$y_{Q I}=13.5 / 2=6.75 \mathrm{ft}$

Project $A S D$ Example Calculations	Project \# 20004.00	Date $2 / 20 / 20$

Base Friction

Use the smaller sliding resistance, R , of the following:

Determine composite friction coefficient across base:

$$
\begin{gathered}
\%_{\text {void }}=(1,621 / 110) /(950 / 145+1,621 / 110)=0.6922 \\
\%_{\text {concrete }}=(950 / 145) /(950 / 145+1,621 / 110)=0.3078 \\
\mu_{\mathrm{b}}=0.6922^{*} \tan (35)+0.3078^{*} 0.8^{*} \tan (40)=0.691 \\
\mathrm{R}_{\text {footing }}=0.691^{*}(9,227+2,776+514)=8,653 \mathrm{lb} / \mathrm{ft}
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{soil}}= & \left(9,227+2,776+514+\left(86 / 12^{*} 9 / 12\right)^{*} 125\right)^{*} \tan (26)+((86+9) / 12)^{*} 150 \\
& =7,620 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

Factors of Safety

Overturning
$\mathrm{FS}=\left[3,500^{*}(36.4 / 12)+0.8^{*} 4,503^{*}(43.0 / 12)+0.8^{*} 1,224^{*}(62.3 / 12)+2,776 * 6.00+514^{*} 5.42\right] /$ $\left(3,679^{*}(4.50)+681^{*} 6.75\right)=2.27>1.5$ OK!!

Sliding

$$
\text { FS }=7,620 /(3,679+681)=1.75>1.5 \quad \text { OK!! }
$$

Bearing

$$
\begin{aligned}
& \mathrm{e}=(86 / 12) / 2-\left[\left(3,500^{*}(36.4 / 12)+4,503^{*}(43.0 / 12)+1,224^{*}(62.3 / 12)+2,776^{*} 6.00+514^{*} 5.42\right)-\right. \\
& \left.\left.\quad\left(3,679^{*} 4.50+681^{*} 6.75\right)\right] /(3,500+4,503+1,224+2,776+514)\right)=1.08 \mathrm{ft} \\
& \mathrm{Bf}_{\mathrm{f}}=(86+9) / 12-2^{*} 1.08=5.76 \mathrm{ft} . \\
& \mathrm{q}_{\mathrm{c}}=(9,227+2,776+514) / 5.76+9 / 12^{*} 125=2,266 \mathrm{psf} \\
& \text { Bearing Factors (Vesic): } \\
& \quad \mathrm{N}_{\mathrm{c}}=22.25 \quad \mathrm{~N}_{\mathrm{q}}=11.85 \quad \mathrm{~N}_{\mathrm{r}}=12.54 \\
& \mathrm{quit}=150^{*} 22.25+((9+9) / 12)^{*} 125^{*} 11.85+0.5^{*} 125^{*} 5.76^{*} 12.54=10,076 \mathrm{psf} \\
& \text { FS }=10,076 / 2,266=4.45>2.0 \quad \text { OK!! }
\end{aligned}
$$

Project $A S D$ Example Calculations	Project \# 20004.00	Date $2 / 20 / 20$

Internal Stability Analysis

Internal stability should be checked at each change in block width, at all dual-face unit, and at the top unit at a minimum. The following is taken at the first change from $24-86$ to 24 SF . Internal stability of the block stack above this interface is calculated as follows:

Wall Configuration (all weights per foot along length of wall)

Modular Units				Setback (in)			Concrete (/ft.)		Unit Fill (/ft.)	
Soil Wedge (/ft.)										
unit	\mathbf{w} (in)	\mathbf{h} (ft)	face	tail	$\mathbf{W}_{\mathbf{b}}$ (lb)	$\mathbf{x}_{\mathbf{b}}$ (in)	$\mathbf{W}_{\mathbf{a}}$ (lb)	$\mathbf{x}_{\mathbf{a}}$ (in)	$\mathbf{W}_{\mathbf{s}}$ (lb)	$\mathbf{x}_{\mathbf{s}}$ (in)
$6-28$	28.0	1.50	8.0	-8.0	238	19.8	183	21.0	41	37.0
$6-28$	28.0	1.50	6.0	-10.0	238	17.8	183	19.0	151	38.6
6	44.0	1.50	4.0	4.0	375	24.0	301	26.5	0	0.0
24	44.0	3.00	0.0	0.0	750	20.2	594	23.8	0	0.0

Weight and Center of Gravity of Wall Components

$$
\begin{aligned}
& W_{\mathrm{b}}=750+375+238+238=1,600 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{~W}_{\mathrm{a}}=594+301+183+183=1,261 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{~W}_{\mathrm{s}}=151+41=193 \mathrm{lb} / \mathrm{ft} \\
& \text { Total Wall Weight }=1,600+1,261+193=3,054 \mathrm{lb} / \mathrm{ft} \\
& \\
& x_{\mathrm{b}}=\left(750^{*} 20.2+375^{*} 24.0+238^{*} 17.8+238^{*} 19.8\right) / 1,600=20.7 \mathrm{in} \\
& x_{\mathrm{a}}=\left(594^{*} 23.8+301^{*} 26.5+183^{*} 19.0+183^{*} 21.0\right) / 1,261=23.3 \mathrm{in} \\
& x_{\mathrm{s}}=\left(151^{*} 38.6+41^{*} 37.0\right) / 193=38.3 \mathrm{in}
\end{aligned}
$$

Earth Pressure Components

$$
\omega^{\prime}=\arctan (-8 / 12 / 7.5)=-5.08^{\circ} \quad \delta=0.75^{*} 30=22.5^{\circ}
$$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\cos ^{2}(30+-5.08)}{\cos ^{2}(-5.08) \cos (-5.08-22.5)\left[1+\sqrt{\frac{\sin (30+22.5) \sin (30-0)}{\cos (-5.08-22.5) \cos (-5.08+0)}}\right]^{2}}
$$

$K_{\mathrm{a}}=0.335$
$\mathrm{P}_{\mathrm{h}}=0.5^{*} 0.335^{*} 120^{*}(7.5)^{2 *} \cos (22.5+5.08)=1,003 \mathrm{lb}$
$P_{v}=0.5^{*} 0.335^{*} 120^{*}(7.5)^{2 *} \sin (22.5+5.08)=524 \mathrm{lb}$
$\mathrm{Q}_{\mathrm{lh}}=0.335^{*} 150 * 7.5^{*} \cos (22.5+5.08)=334 \mathrm{lb}$
$Q_{\mathrm{lv}}=0.335^{*} 150 * 7.5^{*} \sin (22.5+5.08)=175 \mathrm{lb}$

$$
\begin{array}{ll}
\mathrm{x}_{\mathrm{P}}=(7.5 / 3)^{*} \tan (-5.08)+43 / 12=3.36 \mathrm{ft} & \mathrm{y}_{\mathrm{P}}=7.5 / 3=2.5 \mathrm{ft} \\
\mathrm{X}_{\mathrm{QI}}=(7.5 / 2)^{*} \tan (-5.08)+43 / 12=2.61 \mathrm{ft} & \mathrm{y}_{\mathrm{QI}}=7.5 / 2=3.75 \mathrm{ft}
\end{array}
$$

Project $A S D$ Example Calculations	Project \# 20004.00	Date $2 / 20 / 20$

Interface Shear

$$
\mathrm{R}_{\mathrm{s}}=362+(3,054+524+175)^{\star} \tan (35.2)=3,009
$$

Factors of Safety

Overturning/Toppling

$$
\text { FS }=\left[1,600^{*}(20.7 / 12)+0.8^{*} 1,261^{*}(23.3 / 12)+0.8^{*} 193^{*}(38.3 / 12)+524^{*} 3.36+175^{*} 2.61\right] /
$$

$$
\left(1,003^{*} 2.50+334^{*} 3.75\right)=2.00>1.5 \quad \underline{O K}!!
$$

Sliding/Internal Shear
FS $=3,009 /(1,003+334)=2.25>1.5$
OK!!
All other interfaces OK!!

Example 2: 13.5 feet tall wall, $3 \mathrm{H}: 1 \mathrm{~V}$ back slope, CIP tail extension

Retained Soil: sand with $\gamma=120$ pcf and $\phi=30$ degrees
Foundation Soil: \quad clay with $\gamma=125 \mathrm{pcf}, \phi=26$ degrees, and $c^{\prime}=150 \mathrm{psf}$
Infill Aggregate: screened crushed aggregate with $\gamma=110 \mathrm{pcf}$ and $\phi=35$ degrees
Base Aggregate: well graded crushed aggregate with $\gamma=125$ pcf and $\phi=40$ degrees
Tail Extension: $\quad 30$ inches wide by 72 inches tall, placed on aggregate base

Project ASD Example Calculations					Project \# 20004.00			Date $2 / 20 / 20$		
Wall Configuration including CIP tail extension (all weights per foot along length of wall)										
Modular Units			Setback (in)		Concrete (/ft.)		Unit Fill (/ft.)		Soil Wedge (/ft.)	
unit	w (in)	h (ft)	face	tail	W_{b} (lb)	$\mathrm{x}_{\mathrm{b}}(\mathrm{in})$	W_{a} (lb)	xa_{a} (in)	W_{s} (lb)	x_{s} (in)
6	44.0	1.50	16.0	-14.0	375	37.0	301	39.5	25	61.2
24	44.0	3.00	12.0	-18.0	750	33.2	594	36.8	308	61.8
24	44.0	3.00	8.0	-22.0	750	29.2	594	32.8	616	63.3
24	74.0	3.00	4.0	4.0	1,838	47.6	594	28.8	0	0.0
24	74.0	3.00	0.0	0.0	1,838	43.6	594	24.8	0	0.0

External Stability Analysis

Weight and Center of Gravity of Wall Components

$\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}=750+2.5 * 3.0 * 145+750+2.5 * 3.0 * 145+750++750+375=5,550 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\mathrm{a}}=594+594+594+594+301=2,678 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\mathrm{s}}=616+308+25=949 \mathrm{lb} / \mathrm{ft}$
Total Wall Weight $=5,500+2,678+949=9,176 \mathrm{lb} / \mathrm{ft}$
$\mathrm{x}_{\mathrm{b}+\mathrm{te}}=(1,838 * 43.6+1,838 * 47.6+750 * 29.2+750 * 33.2+375 * 37.0) / 5,550=41.1$ in
$x_{a}=(594 * 24.8+594 * 28.8+594 * 32.8+594 * 36.8+301 * 39.5) / 2,678=31.8$ in
$x_{s}=\left(616 * 63.3+308 * 61.8+25^{*} 61.2\right) / 949=62.8$ in

Earth Pressure Components

$$
\begin{aligned}
& \omega^{\prime}=\arctan (-14 / 12 / 13.5)=-4.94^{\circ} \quad \delta=0.75^{*} 30=22.5^{\circ} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\cos ^{2}(30+4.94)}{\cos ^{2}(-4.94) \cos (-4.94-22.5)\left[1+\sqrt{\frac{\sin (30+22.5) \sin (30-18.4)}{\cos (-4.94-22.5) \cos (-4.94+18.4)}}\right]^{2}} \\
& \mathrm{~K}_{\mathrm{a}}=0.456 \\
& \mathrm{P}_{\mathrm{h}}=0.5^{*}(.456)^{\star} 120^{*}(13.5)^{2 *} \cos (22.5+4.94)=4,425 \mathrm{lb} \\
& \mathrm{P}_{\mathrm{v}}=0.5^{*}(.456)^{*} 120^{*}(13.5)^{2 *} \sin (22.5+4.94)=2,298 \mathrm{lb} \\
& \mathrm{X}_{\mathrm{P}}=(13.5 / 3)^{\star} \tan (-4.94)+(74 / 12)=5.78 \mathrm{ft} \quad \mathrm{y}_{\mathrm{P}}=(13.5 / 3)=4.5
\end{aligned}
$$

Project $A S D$ Example Calculations	Project \# 20004.00	Date $2 / 20 / 20$

Base Friction

Use the smaller sliding resistance, R , of the following:

Determine composite friction coefficient across base:

$$
\begin{gathered}
\%_{\text {void }}=(1,621 / 110) /\left(750 / 145+2.0^{*} 3.0+1,621 / 110\right)=0.5688 \\
\%_{\text {prescast }}=(750 / 145) /\left(750 / 145+2.0^{*} 3.0+1,621 / 110\right)=0.1996 \\
\%_{\mathrm{cIP}}=\left(2.0^{*} 3.0\right) /\left(750 / 145+2.0^{*} 3.0+1,621 / 110\right)=0.2316 \\
\mu_{\mathrm{b}}=0.5688^{*} \tan (35)+0.1996^{*} 0.8^{*} \tan (40)+0.2316^{*} \tan (40)=0.606 \\
\mathrm{R}_{\text {footing }}=0.606^{*}(9,176+2,298)=6,953 \mathrm{lb} / \mathrm{ft}
\end{gathered}
$$

$\mathrm{R}_{\text {soil }}=\left(9,176+2,289+\left(74 / 12^{*} 9 / 12\right)^{*} 125\right)^{*} \tan (26)+((74+9) / 12)^{*} 150=6,916 \mathrm{lb} / \mathrm{ft}$

Factors of Safety

Overturning
$\mathrm{FS}=\left[\left(5,550^{*}(41.1 / 12)+0.8^{*} 2,678^{*}(31.8 / 12)+0.8^{*} 949^{*}(62.8 / 12)+2,298^{*} 5.78\right] /\left(4,425^{*} 4.5\right)\right.$

$$
=2.11>1.5 \quad \text { OK!! }
$$

Sliding

$$
\text { FS }=6,916 / 4,425=1.56>1.5 \quad \underline{\text { OK!! }}
$$

Bearing
$e=(74 / 12) / 2-[5,550 *(41.1 / 12)+2,678 *(31.8 / 12)+949 *(62.8 / 12)+2,298 * 5.78)-$
$(4,425 * 4.5)] /(5,550+2,678+949+2,298)=0.95$
$B_{f}^{\prime}=(74+9) / 12-2^{*} 0.95=5.01 \mathrm{ft}$.
$\mathrm{q}_{\mathrm{c}}=((5,550+2,678+949+2,298) / 5.01)+(9 / 12)^{*} 125=2,385 \mathrm{psf}$
Bearing Factors (Vesic):

$$
\mathrm{N}_{\mathrm{c}}=22.25 \quad \mathrm{~N}_{\mathrm{q}}=11.85 \quad \mathrm{~N}_{\gamma}=12.54
$$

$q_{u l t}=150 * 22.25+((9+9) / 12) 125^{*} 11.85+0.5^{*} 125^{*} 5.01^{*} 12.54=9,485 \mathrm{psf}$
$F S=9,485 / 2,385=3.98>2.0 \quad$ OK!!

Project $A S D$ Example Calculations	Project\# 20004.00	Date $2 / 20 / 20$

Internal Stability Analysis

Internal stability should be checked at each change in block width, at all dual-face unit, and at the top unit at a minimum. The following is taken at the change from 24SF unit with tail extension to a 24SF unit. Internal stability of the block stack above this interface is calculated as follows:

Wall Configuration (all weights per foot along length of wall)

Modular Units			Setback (in)		Concrete (/ft.)		Unit Fill (/ft.)	
unit	\mathbf{w} (in)	h (ft)	face	tail	\mathbf{W}_{b} (lb)	\mathbf{x}_{b} (in)	\mathbf{W}_{a} (lb)	\mathbf{x}_{a} (in)
6	44.0	1.50	8.0	8.0	375	28.0	301	30.5
24	44.0	3.00	4.0	4.0	750	24.2	594	27.8
24	44.0	3.00	0.0	0.0	750	20.2	594	23.8

Weight and Center of Gravity of Wall Components

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{b}}=750+750+375=1,875 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{~W}_{\mathrm{a}}=594+594+301=1,489 \mathrm{lb} / \mathrm{ft} \\
& \text { Total Wall Weight }=1,875+1,489=3,364 \mathrm{lb} / \mathrm{ft} \\
& x_{\mathrm{b}}=\left(750^{*} 20.2+750^{*} 24.2+375^{*} 28.0\right) / 1,875=23.4 \mathrm{in} \\
& \mathrm{x}_{\mathrm{a}}=\left(594^{*} 248+594^{*} 28.8+296^{*} 35.5\right) / 1,489=26.8 \mathrm{in}
\end{aligned}
$$

Earth Pressure Components

$$
\begin{aligned}
& \omega^{\prime}=6.34^{\circ} \begin{array}{c}
\delta=0.5^{*} 30=15.0^{\circ} \\
\operatorname{Kos}^{2}(30+6.34) \\
\cos ^{2}(6.34) \cos (6.34-15.0)\left[1+\sqrt{\frac{\sin (30+15.0) \sin (30-18.4)}{\cos (6.34-15.0) \cos (6.34+18.4)}}\right]^{2} \\
\mathrm{~K}_{\mathrm{a}}=0.340 \\
\mathrm{P}_{\mathrm{h}}=0.5^{*} 0.340^{*} 120^{*}(7.5)^{2 *} \cos (15-6.34)=1,135 \mathrm{lb} \\
\mathrm{P}_{\mathrm{v}}=0.5^{*} 0.340^{*} 120^{*}(7.5)^{2 *} \sin (15-6.34)=173 \mathrm{lb} \\
\mathrm{X}_{\mathrm{P}}=(7.5 / 3)^{*} \tan (6.34)+(44 / 12)=3.94 \mathrm{ft} \quad y_{P}=7.5 / 3=2.5 \mathrm{ft}
\end{array}
\end{aligned}
$$

Interface Shear
$\mathrm{R}_{\mathrm{s}}=362+(3,364+173)^{*} \tan (35.2)=2,857 \mathrm{lb}$

Factors of Safety

Overturning/Toppling
$\mathrm{FS}=\left[1,875^{*}(23.4 / 12)+0.8^{*} 1,489^{*}(26.7 / 12)+173^{*} 3.94\right] /\left(1,135^{*} 2.5\right)=2.46>1.5 \quad$ OK!!
Sliding/Internal Shear
FS $=2,857 / 1,135=2.52>1.5$
OK!!
All other interfaces OK!!

SYSTEMS ${ }^{\circ}$

STONE STRONG GRAVITY CALCULATIONS－ver 6.0

Page 1 of 3
Notes 13.5 tall wall with extended precast units，battered face
2／20／20 15：49 level back slope， 150 psf parking lot surcharge External Stability

Wall Con	guration		setback	k（in）	modula	ar units	unit		soil W	dge	CIP Ex	sion	Internal S	ability FS	Seismic In	nternal	
unit	w（in）	h （ft）	face	tail	Wb（lb）	xb （in）	Wa（lb）	xa（in）	Ws（lb）	xs（in）	we（in）	h_{t}	Topple	Shear	Topple	Shear	
6－28	28.0	1.50	16.0	－42．0	238	28.8	183	30.0	63	47.1			6.60	6.47			OK！
6－28	28.0	1.50	14.0	－44．0	238	26.8	183	28.0	217	50.1			3.01	3.87			OK！
6	44.0	1.50	12.0	－30．0	375	33.0	301	35.5	151	61.8			3.53	3.02			OK！
24	44.0	3.00	8.0	－34．0	750	29.2	594	32.8	792	66.9			2.00	2.25			OK！
24－86	86.0	3.00	4.0	4.0	950	44.0	1，621	49.1	0	0.0			2.98	2.38			OK！
24－86	86.0	3.00	0.0	0.0	950	40.0	1，621	45.1	0	0.0							
													Externa	Stability	OK！		
	86.0	13.50	16.0	－42．0	3，500	36.4	4，503	43.0	1，224	62.3	9，227						
	height	13.50		$\omega=$	6.34	deg		interfac	friction	ngle							
expos	height	12.75	eet	$\omega^{\prime}=$	－14．53	deg		δ	22.5	deg							
Retained			120	pcf		Founda	ion Soil		125				base em	edment	9	in	
		ϕ	30					ϕ	26				base	ickness	9	in	
								，						material	agg		
														e slope		$\mathrm{H}: 1 \mathrm{~V}$ s	
						allowabl	bearing	ressure									
Aggrega	Unit Fill		γ	110	pcf		specified）		（net）			mos	friction	efficient	μ_{b}	0.69	

STONE STRONG GRAVITY CALCULATIONS - ver 6.0

Page 2 of 3
2/20/20 15:49
Seismic Load $\mathrm{Ss} \square \mathrm{G}$
$\begin{array}{llllllll}\text { site class }(\text { A to E or 1) } & \text { D } & \text { Fpga } & 1.60 & \text { Fa } & 1.60 & k_{h} & 0.00\end{array}$

Backfill Slope \& Surcharge

Analysis		$\mathrm{Q}_{\mathrm{lh}}=$	681		$\Delta \mathrm{K}_{\text {AE }}=$	0.000	e=	1.08 ft
	$\mathrm{K}_{\mathrm{a}}=0.421$	$\mathrm{Q}_{1 \mathrm{l}}=$	514		$\mathrm{P}_{\mathrm{IR}}=$	0 lb	$\mathrm{B}_{\mathrm{f}}{ }^{\prime}=$	5.76 ft
	$\mathrm{P}_{\mathrm{h}}=3,679 \mathrm{lb}$	$\mathrm{R}_{\mathrm{s}}=$	7,620		$\Delta \mathrm{P}_{\text {AEh }}=$	0 lb	$\mathrm{e}_{\text {eq }}=$	0.82 ft
	$\mathrm{P}_{\mathrm{v}}=2,776 \mathrm{lb}$	$\mathrm{q}_{\mathrm{ult}}=$	10,076		$\Delta \mathrm{P}_{\mathrm{AEv}}=$	0 lb	$B_{f}^{\prime \prime}{ }^{\prime}=$	6.28 ft
Results	Overturning:	Desired FS =		1.5		Actual FS =	2.27	OK!
	Sliding:	Desired FS = 1				Actual FS =	1.75	OK!
	Bearing Capacity:	Desired FS $=2$				Actual FS =	4.45	OK!
		$\mathrm{q}_{\mathrm{all}}=$	5,038			$\mathrm{q}_{\mathrm{c}}=2,266$		

STONE STRONG GRAVITY CALCULATIONS－ver 6.0
Project Name：Example Calculations
$\begin{aligned} & \text { Location：} \\ & \text { Job\＃：} 20004.00\end{aligned}$
Section：Example \＃1
Calc by：D Thiele

STONE STRONG GRAVITY CALCULATIONS - ver 6.0

Page 1 of 3
Notes 13.5 tall wall with extended precast units, battered face 2/20/20 15:49 level back slope, 150 psf parking lot surcharge Internal Stability

Wall Co	guration		setb	(in)	modula	units			soil W	dge	CIP Ex	sion	Internal	bility FS	Seismic	ernal F	
unit	w (in)	h (ft)	face	tail	Wb (lb)	xb (in)	Wa (lb)	xa (in)	Ws (lb)	xs (in)	we (in)	h_{t}	Topple	Shear	Topple	Shear	
6-28	28.0	1.50	8.0	-8.0	238	19.8	183	21.0	41	37.0			6.60	6.47			OK!
6-28	28.0	1.50	6.0	-10.0	238	17.8	183	19.0	151	38.6			3.01	3.87			OK!
6	44.0	1.50	4.0	4.0	375	24.0	301	26.5	0	0.0			3.53	3.02			OK!
24	44.0	3.00	0.0	0.0	750	20.2	594	23.8	0	0.0							
													Internal	tability			
	44.0	7.50	8.0	-8.0	1,600	20.7	1,261	23.3	193	38.3	3,054						
bac	height	7.50	et	$\omega=$	6.34			interfa	friction	ngle							
				$\omega^{\prime}=$	-5.08				22.5	deg							

Retained Soil

γ	120
ϕ	30

Internal ONLY

STONE STRONG GRAVITY CALCULATIONS－ver 6.0

Page 2 of 3
2／20／20 15：49
Seismic Load $\quad \mathrm{Ss} \square \mathrm{G}$
$\begin{array}{llllllll}\text { site class }(\text { A to E or 1）} & \text { D } & \text { Fpga } & 1.60 & \text { Fa } & 1.60 & k_{h} & 0.00\end{array}$

Backfill Slope \＆Surcharge

Analysis		
		$\mathrm{K}_{\mathrm{a}}=$
	0.335	
	$\mathrm{P}_{\mathrm{h}}=$	$1,003 \mathrm{lb}$
	$\mathrm{P}_{\mathrm{v}}=$	524 lb

$\mathrm{Q}_{\mathrm{lh}}=$	334 lb
Q_{lv}	$=175 \mathrm{lb}$
R_{s}	$=3,009 \mathrm{lb}$
$\mathrm{q}_{\mathrm{ult}}=$	$7,982 \mathrm{psf}$

$\Delta \mathrm{K}_{\mathrm{AE}}=$	0.000	$\mathrm{e}=$	0.62 ft
$\mathrm{P}_{\mathrm{IR}}=$	0 lb	$\mathrm{B}_{\mathrm{f}}^{\prime}=$	3.09 ft
$\Delta \mathrm{P}_{\mathrm{AEh}}=$	0 lb	$\mathrm{e}_{\mathrm{eq}}=$	0.37 ft
$\Delta \mathrm{P}_{\mathrm{AEv}}=$	0 lb	$\mathrm{B}_{\mathrm{feq}}^{\prime}=$	3.59 ft

Results Internal Overturning：
Desired FS＝ 1.5
Interface Shear：
Desired FS＝ 1.5

Actual FS $=2.00$ OK！
 Actual FS $=2.25$ OK！

STONE STRONG GRAVITY CALCULATIONS - ver 6.0
Project Name: Example Calculations
Location:
Job\#:
20004.00
Section: Example \#1
Calc by: D Thiele

STONE STRONG GRAVITY CALCULATIONS - ver 6.0
Project Name: Example Calculations
Location:
Job\#:
20004.00

Section: Example \#2
Calc by: D Thiele
Page 1 of 3

3H:1V backslope External Stability

STONE STRONG GRAVITY CALCULATIONS－ver 6.0

| Fpga | $1.60 \quad$ Fa | 1.60 |
| :--- | :--- | :--- | :--- |

Backfill Slope \＆Surcharge

length 1	30	feet（horizontal）
length 2		feet（horizontal）
length 3		feet（horizontal）
length 4		feet（horizontal）

$$
\text { effective slope } \quad 3.00 \mathrm{H}: 1 \mathrm{~V} \text { slope }
$$

$$
\text { failure plane } \alpha \quad 49.87 \mathrm{deg}
$$

avg q $\quad 0 \mathrm{psf}$
zone of influence 22.45 ft

Analysis

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a}} & =0.456 \\
\mathrm{P}_{\mathrm{h}} & =4,425 \mathrm{lb} \\
\mathrm{P}_{\mathrm{v}} & =2,298 \mathrm{lb}
\end{aligned}
$$

$\mathrm{Q}_{\mathrm{lh}}=$	0 lb
Q_{lv}	0 lb
$\mathrm{R}_{\mathrm{s}}=$	$6,916 \mathrm{lb}$
$\mathrm{q}_{\mathrm{ult}}=$	$9,485 \mathrm{psf}$

$\Delta \mathrm{K}_{\mathrm{AE}}=$	0.000
$\mathrm{P}_{\mathrm{IR}}=$	0 lb
$\Delta \mathrm{P}_{\mathrm{AEh}}=$	0 lb
$\Delta \mathrm{P}_{\mathrm{AEV}}=$	0 lb

$\mathrm{e}=$	0.95 ft
$\mathrm{B}_{\mathrm{f}}^{\prime}=$	5.01 ft
$\mathrm{e}_{\mathrm{eq}}=$	0.95 ft
$\mathrm{B}_{\mathrm{feq}}^{\prime}=$	5.01 ft

$$
\text { Actual FS }=3.98 \quad O K!
$$

$$
\mathrm{q}_{\mathrm{c}}=2,385 \mathrm{psf}
$$

STONE STRONG GRAVITY CALCULATIONS－ver 6.0
Project Name：Example Calculations
Location：
Job\＃： 20004.00
Section：Example \＃2
Calc by：D Thiele
Ground Surface \＆Trial Wedge Plot

STONE STRONG GRAVITY CALCULATIONS - ver 6.0
Example Calculations
Project Name:
Location:
Job\#: 20004.00
Section: Example \#2
Calc by: D Thiele
Page 1 of 3
Notes 13.5 tall wall with CIP tail extension, battered face

```
3H:1V backslope Internal Stability
```


Retained Soil
$\gamma \quad 120$ pcf
$\phi \quad 30$ deg

Internal ONLY

STONE STRONG GRAVITY CALCULATIONS－ver 6.0

Seismic Load $\quad \mathrm{Ss} \square \mathrm{G}$
site class（A to E or 1 ）D

| Fpga | $1.60 \quad$ Fa | 1.60 |
| :--- | :--- | :--- | :--- |

avg q $\quad 0 \mathrm{psf}$
zone of influence $\quad 12.68 \mathrm{ft}$

Analysis

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a}} & =0.340 \\
\mathrm{P}_{\mathrm{h}} & =1,135 \mathrm{lb} \\
\mathrm{P}_{\mathrm{v}} & =173 \mathrm{lb}
\end{aligned}
$$

Results

$\mathrm{Q}_{\mathrm{lh}}=$	0 lb
$\mathrm{Q}_{\mathrm{lv}}=$	0 lb
$\mathrm{R}_{\mathrm{s}}=$	$2,857 \mathrm{lb}$
$\mathrm{q}_{\mathrm{ult}}=$	$8,275 \mathrm{psf}$

$\Delta \mathrm{K}_{\mathrm{AE}}=$	0.000
$\mathrm{P}_{\mathrm{IR}}=$	0 lb
$\Delta \mathrm{P}_{\mathrm{AEh}}=$	0 lb
$\Delta \mathrm{P}_{\mathrm{AEV}}=$	0 lb

$\mathrm{e}=$	0.43 ft
$\mathrm{B}_{\mathrm{f}}^{\prime}=$	3.46 ft
$\mathrm{e}_{\mathrm{eq}}=$	0.43 ft
$\mathrm{B}_{\mathrm{feq}}^{\prime}=$	3.46 ft

STONE STRONG GRAVITY CALCULATIONS - ver 6.0
Project Name: Example Calculations
Location:
Job\#: 20004.00
Section: Example \#2
Calc by: D Thiele
Ground Surface \& Trial Wedge Plot

