

Project Gravity Wall Design - ASD Project # 20004.00

6/2/20

Date

GRAVITY WALL DESIGN - ASD

STONE STRONG PRECAST MODULAR BLOCK

This engineering section presents information for design of Stone Strong retaining walls in a gravity configuration using conventional procedures with safety factors.

The design methodologies presented conform substantially to AASHTO specifications (Standard Specifications for Highway Bridges - 2002). This section includes the following documents:

Gravity Wall Design Methodology (15 pages) Example Gravity Wall Calculations (9 pages) Example Spreadsheet Output (12 pages)

The example calculations and example spreadsheet output match identical design conditions and are intended as verification of the spreadsheet method. Note that the Gravity Analysis Spreadsheet is available on the Stone Strong website.

Page SYSTEMS Project Date Project # Gravity Wall Design Methodology 20004.00 2/20/20 **GRAVITY WALL DESIGN METHODOLOGY (ASD)** STONE STRONG PRECAST MODULAR BLOCK Evaluate gravity retaining wall using allowable stress design approach following AASHTO and NCMA analytical techniques. Additional requirements, analytical methods, and theories are taken from the International Building Code, other AASHTO versions, and FHWA publications. Refer to: AASHTO Standard Specifications for Highway Bridges 2002, 17th Edition NCMA Design Manual for Segmental Retaining Wall, 3rd Edition FHWA Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines, NHI-00-043 International Building Code **Properties of Soil/Aggregate** Soil and material properties should be determined for the specific materials to be used: unit fill - γ_u = 110 pcf (17.3 kN/m³) max (see AASHTO 5.9.2) & ϕ_u leveling base $-\gamma_b \& \phi_b$ for typical aggregate base (or concrete base may be substituted) retained soil - $\gamma \& \phi$ by site conditions (where select backfill is used, select material must encompass entire retained soil influence zone) foundation soil - $\gamma \phi$ & c by site conditions interface angle (see AASHTO 5.9.2) For stepped modules, when the block width varies within a vertical section, $\delta = \frac{3}{4} \phi$ For cases where all blocks are substantially uniform width, $\delta = \frac{1}{2} \phi$ Note: infill weight is reduced to account for infill material not engaged by modular units in overturning. Only 80% of the weight of aggregate is included in the overturning calculations, W' (see AASHTO 5.9.2)

Gravity Wall Design Methodology

Project # 20004.00

2/20/20

Precast Modular Unit Geometric Properties

(not all units available from all dealers, verify availability)

Date

Block Lib	Block Library – Imperial Units				(not all units available from all dealers, verify availability)			
Block		Conc. Wt.	Void Vol.	Length	Height	Unit Width	Conc. Cen. of Gravity	Void Cen. of Gravity
Туре	Description	(lbs)	(ft ³)	(ft)	(ft)	(in)	x _b (in)	x _a (in)
6-28	6SF-28 unit (6 square feet)	950	6.65	4	1.50	28	12.8	14.0
6SF	6SF unit (6 square feet)	1,500	10.95	4	1.50	44	21.0	23.5
24SF	24SF unit (24 square feet)	6,000	43.21	8	3.00	44	21.2	24.8
24-ME	24SF Mass Extender unit	10,000	44.94	8	3.00	56	32.7	25.8
24-62	24SF-62 unit	6,800	76.05	8	3.00	62	29.1	33.0
24-86	24SF-86 unit	7,600	117.90	8	3.00	86	40.0	45.1

dimensions are for battered units - for vertical face 24SF units, the width and center of gravity dimensions are all reduced by 1 inch

Block Lib	Block Library – Metric Units				(not all units available from all dealers, verify availability			
Block		Conc. Wt.	Void Vol.	Length	Height	Unit Width	Conc. Cen. of Gravity	Void Cen. of Gravity
Туре	Description	(kN)	(m³)	(m)	(m)	(mm)	x _b (mm)	x _a (mm)
6-28	6SF-28 unit (6 square feet)	4.23	0.19	1.22	0.46	711	324	356
6SF	6SF unit (6 square feet)	6.67	0.31	1.22	0.46	1,118	533	597
24SF	24SF unit (24 square feet)	26.69	1.22	2.44	0.91	1,118	538	630
24-ME	24SF Mass Extender unit	44.48	1.28	2.44	0.91	1,422	831	655
24-62	24SF-62 unit	30.25	2.16	2.44	0.91	1,575	739	838
24-86	24SF-86 unit	33.8	3.35	2.44	0.91	2,184	1,016	1,146

dimensions are for battered units - for vertical f 24SF units, the width and center of gravity dimensions are all reduced by 25 mm

Wall stability calculations are performed per unit length of wall, so all weights and forces are expressed per foot or m of wall length.

Page

2/15

Project

R

SYSTEMS		Page 5/15)
Project Gravity Wall Design Methodology	Project # 20004.00	Date 2/20/20	

Wall units that vary in width are referred to as "stepped" modules. Wider wall units are typically placed at the bottom of the wall. In addition to using wider precast units, the stability of a gravity wall can be improved by using cast-in-place tail extensions to increase the width of the units. The width of the CIP extension is not limited, but it is recommend that the height be at least 2 times the width to provide shear through the tail openings (unless connecting with reinforcing steel).

Wall batter

In common applications, the block units are installed in a battered configuration. In a typical batter, the 24 SF, 24-62, 24-86, and 24-ME units are 36 inches (914 mm) high and the next block atop a 24 SF block will batter back 4 inches (102 mm). The 6 SF and 6-28 units are 18 inches (457 mm) tall, and the next block atop a 6 SF block will batter 2 inches (51 mm). These blocks may be interchanged within a wall stack, but the batter is determined by the height of the unit below.

4 in. setback per 24 SF block (36 in. tall)	102 mm setback per 24SF block (914 mm tall)
2 in. setback per 6 SF block (18 in. tall)	51 mm setback per 6SF block (457 mm tall)
The face batter is calculated as:	
ω = arctan(4/36) = 6.34°	ω = arctan(102/914) = 6.34°
or ω = arctan(2/18) = 6.34°	ω = arctan(51/457) = 6.34°

In some applications, the units may be installed with no batter to create a vertical face, $\omega = 0^{\circ}$

For uniform modules, the batter of the back face matches the batter of the front face. For stepped modules, the batter is recalculated along the back of the wall from the rear of the bottom unit to the rear of the top of the wall. Use ω' in Coulomb equation and earth pressure component calculations. To calculate ω' it is necessary to know the effective setback width, w_s, which is the horizontal distance between the back edge of the top block and the back edge of the lower unit including any tail extension. w_s is negative when the mass extender projects further than the back of the top block. Knowing this distance and the height of wall:

$$\omega' = \arctan(w_s/H_w)$$

Base Thickness/Embedment

The type and thickness of wall base or leveling pad and depth of embedment can vary by site requirements. A granular base with a thickness of 9 inches (225 mm) is commonly used, but the thickness can be adjusted to reduce the contact pressure. A concrete leveling pad or footing can also be used. The required embedment to the top of the base is related to the exposed height of the wall and by the slope at the toe, as well as other factors. The required embedment can be calculated for slopes steeper than 6H:1V using the following equation:

 $h_e = H'/(20*S/6)$

where S is the run of the toe slope per unit fall and H' is the exposed height of the wall

A minimum embedment of 6 to 9 inches (150 to 225 mm) is recommended for private projects. A minimum embedment of 20 inches (500 mm) or more may be required for roadway applications

Gravity Wall Design Methodology	Project # 20004.00	Date 2/20/20
Weight of Wall		
The weight of the wall includes the con extension, and the soil wedge atop ex		
The weight of the tail extension is calc	culated:	
W _{te} = (w _{te} * H _{te}) * 145 pcf (22.8	kN/m³)	(typical unit weight for concret
where w_{te} is the width of the ta	il extension and H_{te} is the he	ight of the extension (both in ft.)
The angle of the batter (from vertical)	of the soil wedge above the	tail extension, ω_s , is calculated:
$\omega_s = \arctan(-w_s'/H_{wedge})$		
The weight of soil in the wedge above wedge that lies behind each block	the tail extension is calculat	ed for the trapezoidal area of the
h_s = height of the soil trapezoid	l behind the block (may diffe	r from height of the block)
w_u = width of the block		
h_1 = dist. from the top of wall to	o top of the soil trapezoid bel	hind the block
h_2 = dist. from the top of wall to		behind the block
s = dist. from the face of wall to		
s_u = dist. from the face of wall t		
s_T = dist. from the face of wall	·	
b ₁ = length of top side of trape:		
b_2 = length of bottom side of tra	apezoid of soil behind block	= h ₂ * tan(ω _s)+(s _T - s _u)
The weight of the soil wedge above th trapezoidal area multiplied by the less		

$$\begin{aligned} x_{s} &= [(b_{1}*b_{2}+(b_{2}^{2}-2*b_{1}*b_{2}+b_{1}^{2})/3)/(b_{1}+b_{2})]+ s + w_{u} \\ y_{s} &= [h_{s}/3*(2b_{1}+b_{2})/(b_{1}+b_{2})]+ H - h_{2} \end{aligned}$$

 W_s is treated as aggregate infill subject to 80% limitations for overturning calculations (conservative)

SYSTEMS		Page I / I J
Project Gravity Wall Design Methodology	Project # 20004.00	Date 2/20/20

Static Forces

Coulomb active earth pressure coefficient (see AASHTO 5.5.2-1)

$$\mathsf{K}_{\mathsf{a}} = \frac{\mathsf{cos}^{2}(\phi + \omega')}{\mathsf{cos}^{2}(\omega')\mathsf{cos}(\omega' - \delta) \left[1 + \sqrt{\frac{\mathsf{sin}(\phi + \delta)\mathsf{sin}(\phi - \beta)}{\mathsf{cos}(\omega' - \delta)\mathsf{cos}(\omega' + \beta)}}\right]^{2}}$$

As an alternate, a trial wedge technique may be used to determine the earth pressure forces acting on the modular wall.

Earth Load Components (see AASHTO 5.5.2-1)

Vertical forces:

 $\mathsf{P}_{\mathsf{v}} = 0.5 \;\mathsf{K}_{\mathsf{a}} \,\gamma \;\mathsf{H}^{2*} \mathsf{sin}(\delta - \omega')$

 $Q_{lv} = K_a Q H^* sin(\delta - \omega)$ where Q is the effective surcharge in psf (kPa)

Horizontal forces:

 $P_{h} = 0.5 K_{a} \gamma H^{2*} \cos(\delta - \omega')$ $Q_{h} = K_{a} Q H^{*} \cos(\delta - \omega') \text{ where } Q \text{ is the effective surcharge in psf (kPa)}$

Resultants of earth load components:

y_P=H/3 x_P=(H/3)*tan(ω') + w_u y_{Ql}=H/2 x_{Ql}=(H/2)*tan(ω') + w_u

where w_u is the width of the bottom unit, including any tail extension (w_{te})

7/15

	SYSTEMS		Page	8/15
Project	Gravity Wall Design Methodology	Project # 20004.00	Date 2/20/20	
	Weight Components			
	Vertical forces:			
	W_{b} – Weight of wall units			
	W_{te} – Weight of concrete tail ex	tension, if used		
	W _a – Weight of infill aggregate (use 80% aggregate weight fo	or overturning)	
	W_s – Weight of soil atop tail exte	ension (use 80% aggregate v	veight for overturning)	
	$W_{b} = \sum (W_{b1} + W_{b2} + \cdots + W_{bn})$			
	$W_{te} = \sum (W_{te1} + W_{te2} + \cdots + W_{te})$			
	$W_a = \sum (W_{a1} + W_{a2} + \dots + W_{an})$			
	$W_s = \sum (W_{s1} + W_{s2} + \dots + W_{sn})$			
	Resultants of weight components:			
	The center of mass of the stack of bloc	ks is calculated as:		
	$x_{b} = \sum (W_{b1}^{*}x_{b1} + W_{b2}^{*}x_{b2} + \cdots + w_{b2}^{*}x_{b2})$	$(W_{bn} * x_{bn}) / \sum (W_{b1} + W_{b2} + \cdots)$	+ W _{bn})	
	$y_b = \sum (W_{b1}^* y_{b1} + W_{b2}^* y_{b2} + \dots + y_{b2}^* y_{b2})$	- W _{bn} *y _{bn}) / ∑(W _{b1} + W _{b2} + ·····	+ W _{bn})	
	The center of mass of the aggregate fil	l is:		
	$x_a = \sum (W_{a1}^* x_{a1} + W_{a2}^* x_{a2} + \dots + $	- W _{an} *x _{an}) / ∑(W _{a1} + W _{a2} + ·····	+ W _{an})	
	$y_a = \sum (W_{a1}^* y_{a1} + W_{a2}^* y_{a2} + \dots +$	- W _{an} *y _{an}) / ∑(W _{a1} + W _{a2} + ·····	+ W _{an})	
	The center of mass of the soil wedge o	ver the tail is:		

The center of mass of the soil wedge over the tail is:

$$\begin{aligned} x_s &= \sum (W_{s1}^* x_{s1} + W_{s2}^* x_{s2} + \dots + W_{sn}^* x_{sn}) / \sum (W_{s1} + W_{s2} + \dots + W_{sn}) \\ y_s &= \sum (W_{s1}^* y_{s1} + W_{s2}^* y_{s2} + \dots + W_{sn}^* y_{sn}) / \sum (W_{s1} + W_{s2} + \dots + W_{sn}) \end{aligned}$$

The center of mass of the tail extension can be calculated with the following equation:

$$\begin{aligned} x_{te} &= \sum (W_{te1} * x_{te1} + W_{te2} * x_{te2} + \dots + W_{ten} * x_{ten}) / \sum (W_{te1} + W_{te2} + \dots + W_{te}) \\ y_{te} &= \sum (W_{te1} * y_{te1} + W_{te2} * y_{te2} + \dots + W_{ten} * y_{ten}) / \sum (W_{te1} + W_{te2} + \dots + W_{te}) \end{aligned}$$

The overall adjusted center of mass of the blocks and tail extension:

The overall adjusted center of mass of the aggregate and the soil above the tail is:

$$\begin{split} x_{a+s} &= (W_a^* x_a + W_s^* x_s) \, / \, (W_a + W_s) \\ y_{a+s} &= (W_a^* y_a + W_s^* y_s) \, / \, (W_a + W_s) \end{split}$$

STONE STRONG SYSTEMS'			Page	9/15
Project Gravity Wall Design Methodology	Project # 20004.00	Date	2/20/20	

Seismic Loads

Seismic components of force are calculated according to the procedures in FHWA 4.2h.

The maximum acceleration $A_m = (1.45 - A)^*A$ where A is the peak horizontal ground acceleration.

The seismic earth pressure coefficient is calculated with the following equation:

$$K_{ae} = \frac{\cos^2(\phi + \omega' - \xi)}{\cos(\xi)\cos^2(-\omega')\cos(\delta - \omega' + \xi)\left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \xi - \beta)}{\cos(\delta - \omega' + \xi)\cos(\omega' + \beta)}}\right]^2}$$

where $\xi = \arctan [k_h/(1 - k_v)]$

The trial wedge technique is recommended in high seismicity regions to determine the dynamic thrust forces acting on the modular wall.

Seismic Earth load components

 k_v is generally taken as 0. k_h is the maximum horizontal acceleration of the wall, and is a function of the maximum allowable displacement of the wall during a seismic event. It is calculated with the following equation:

$$k_h = 1.66 * A_m * [A_m/(d*C)]^{0.25}$$

d is the maximum horizontal displacement, and is typically set at 2 inches (50 mm) as conservative. Note that this equation has embedded units of mm, and C is a conversion factor (25.4 when d is in units of inches, and 1 when d is in units of mm).

 $A_m = (1.45 - PGA)*PGA$

Note that when PGA is not provided, it can be calculated from seismic response values provided in the International Building Code. IBC 1802.2.7 allows for PGA to be taken as $S_{DS}/2.5$. Following IBC Eq. 16-37 and 16-39:

 $PGA = 0.267 * S_s F_a$

The horizontal inertial force P_{ir} is calculated as follows:

 $P_{ir} = (W_b + W_{te} + W_a + W_s)^* k_h$

The seismic thrust is calculated as follows:

$$\Delta P_{ae} = 0.5 * \gamma * H^{2} * (K_{ae} - K_{a})$$

$$\Delta P_{aeh} = 0.5 * \gamma * H^{2} * (K_{ae} - K_{a}) * \cos(\delta - \omega')$$

$$\Delta P_{aev} = 0.5 * \gamma * H^{2} * (K_{ae} - K_{a}) * \sin(\delta - \omega')$$

Resultants of Seismic Earth load components

In overturning analysis, the inertial force is applied at the vertical center of gravity of the wall, while the seismic thrust is applied at 60% of the wall height.

	SYSTEMS		Page 10/15
Project	Gravity Wall Design Methodology	Project # 20004.00	Date 2/20/20
	у _{Рае} = 0.6*Н		
	x _{Pae} = 0.6*H*tan(ω') + w _u		
	$y_{Pir} = (W_b^* y_b + W_{te}^* y_{te} + W_a^* y_a +$	$W_s * y_s) / (W_b + W_{te} + W_a + W_s)$	
	Since the inertial and thrust forces are g inertial force is applied along with 50%		
	Stability including seismic load condition overturning/eccentricity, and bearing.	· ·	•
Base	Friction		
	Friction across the base of the wall is us determined both between the wall asse foundation soil (or through the foundation	mbly and the base and betwee	
	The sliding resistance is calculated as t	he smaller result of the followir	ng equations:
	For base to foundation soil failur	e, use:	
	$R_{s(foundation soil)} = (W_b + W_{te})$	$_{e}$ + W _a + W _s + P _v + w _u *t _b * γ_{b}) tan	ϕ + B _w *c
	width including any tail e	dation soil friction angle, B _w is xtension plus ½H:1V distributio il cohesion. The weight of the	on through base), and c
	For block to base material slidin	g, use:	
	$R_{s(footing)} = \mu_b (W_b + W_{te} +$	$W_a + W_s + P_v$)	
	where μ_b represents a co	omposite coefficient of friction f	or the base
	The composite friction coefficient is calc unit consists of a percentage of open concrete. These percentages are calcu	void space to be filled with ag	
	$%_{void} = V_{void}/(V_{void}+V_{concrete})$		
	$\mathcal{C}_{concrete} = V_{concrete} / (V_{void} + V_{concrete})$		

If a tail extension is used, the area of the tail extension must also be calculated and the total area is also increased accordingly. Thus, the equation for composite friction coefficient across the base becomes:

 $\mu_{b} = (\%_{void} * W_{u(bottom)} * \mu_{p - unit fill/base} + \%_{concrete} * W_{u(bottom)} * \mu_{p - block/base} + W_{te} * \mu_{p - extension/base}) / (W_{u(bottom)} + W_{te})$

	SYSTEMS'			Page	11/15
Project	Gravity Wall Design Methodology	Project # 20004.00	Date 2	2/20/20	

Partial friction coefficients can be interpreted from the following table:

	Coefficient of Friction
Block to Aggregate Base	
formed precast surface on compacted aggregate surface (includes Mass Extender)	0.8*tan ∳₅
Unit Fill to Aggregate Base screened aggregate (loose to moderate relative density - dumped) on compacted aggregate surface	lower tan φ _b or tan φ _u
Block to Concrete Base	0.60
formed precast surface on floated concrete surface (includes Mass Extender)	0.00
Unit Fill Aggregate to Concrete Base	
screened aggregate (loose to moderate relative density - dumped) on floated	0.8*tan φ _u
concrete surface	
Concrete Tail Extension to Aggregate Base	ton 4
cast in place concrete on aggregate surface	tan φ₅
Concrete Tail Extension to Concrete Base	0.75
cast in place concrete on floated concrete surface	0.75
Concrete Tail Extension Directly on Foundation Soil (Sand)	ton 1
cast in place concrete on granular soil	tan φ _f
Note: These typical values may be used for evaluation of base sliding at the discretion of the user. The of record is responsible for all design input and for evaluating the reasonableness of calculation his/her knowledge of local materials and practices and on the specific design details.	

Since the unit fill aggregate is typically placed to a moderately loose state, the friction angle for the screened unit fill aggregate typically controls for the interface between the unit fill and the base aggregate.

If actual test data for the project specific materials is not available, or for preliminary design, the following conservative friction angles are suggested for base and infill aggregates:

	Friction Angle (degrees)			
	Well Graded, Aggregate, Densely Compacted	Screened Aggregate, Compacted	Screened Aggregate, Loose to Moderate Relative Density	
Crushed Hard Aggregate >75% w/ 2 fractured faces, hard natural rock	42	40	36	
Crushed Aggregate >75% w/ 2 fractured faces, medium natural rock or recycled concrete	40	38	35	
Cracked Gravel >90% w/ 1 fractured face	36	35	32	
Note: Physical testing of specific aggregates is recommended. When test data is not available, these typical values may bused at the discretion of the user. The licensed engineer of record is responsible for all design input and for evaluating the reasonableness of calculation output based upon his/her knowledge of local materials and practices and on the specific design details.				

STONE
STRONG
SYSTEMS

	SYSTEMS			Page	12/15
Project	Gravity Wall Design Methodology	Project # 20004.00	Date	2/20/20	

Table of Forces & Moments

	Force	Arm	Moment about toe
	(lb) or (kN)	(ft) or (m)	(lb*ft) or (kN *m)
Vertical Forces			
weight of blocks	W _b + W _{te}	X _{b+te}	$(W_b + W_{te})^* x_{b+te}$
weight of agg. & soil over tail	$W_a + W_s$	X _{a+s}	$(W_a + W_s) * X_{a+s}$
modified weight of a & s (80%)	$0.8^{*}(W_{a} + W_{s})$	X _{a+s}	0.8*(W _a + W _s) * x _{a+s}
earth pressure	Pv	XP	P _v *x _P
seismic thrust	P _{aev} /2	X _{Pae}	$P_{aeh}/2 * x_{Pae}$
LL surcharge	Q _{Iv}	X _{QI}	$Q_{iv}^{*}x_{Qi}$
Horizontal Forces			
earth pressure	Ph	УРh	Ph*yPh
seismic thrust	$\Delta P_{aeh}/2$	УРае	$\Delta P_{aeh}/2 * y_{Pae}$
inertial force	P _{ir}	УРir	P _{ir} * y _{Pir}
LL surcharge	Q _{lh}	Yqi	Q _{lh} *y _{Ql}

Project	Project #	Date
Gravity Wall Design Methodology	20004.00	2/20/20

Overturning

For overturning, the modified weights using 80% of the aggregate weight (including the soil over the tail extension) are used for all overturning calculations.

M'∨	Σ moments from vertical forces (using 80% W_s & $W_a)$						
M _H	Σ moments from horizontal forces						
FS	M'v / M _H						

The overturning safety factor should be greater than 1.5 for private projects (NCMA 4.3 and IBC 1806.1). A minimum safety factor of 2.0 may be required for highway applications (AASHTO 5.5.5).

check that FS > 1.5 with static earth pressure loads and surcharge loads

Safety factors are typically reduced 25% for seismic loading due to the extreme nature of these events. Surcharge loads are generally not applied concurrent with seismic loads.

check that FS > 1.13 with static earth pressure loads and seismic loads

Sliding

The minimum value for sliding resistance is calculated as follows:

F _H	Σ horizontal forces
Fv	Σ vertical forces (using 100% W_s & $W_a)$
R _{s (footing)}	$\mu_{b} F_{V}$
Rs (foundation soil)	$(F_{V} + t_{b}*w_{b}*\gamma_{b})*tan(\phi) + B_{w}*c$
min R₅	smaller of $R_{s \ (footing)}$ or $R_{s \ (foundation \ soil)}$
FS	min R's / F _H

The safety factor for sliding should be greater than 1.5

check that FS > 1.5 with static earth pressure loads and surcharge loads check that FS > 1.13 with static earth pressure loads and seismic loads

FS

	STSTEMS			Faye II/I	
roject	Gravity Wall Design M	ethodology	Project # 20004.00	Date 2/20/20	
Beariı	ng/Eccentricity				
	•	-	the base block width adju anular base or 1H:1V distri	sted for eccentricity, and ibution through concrete base.	
	$B_{f}' = w_{u} + w_{te} +$	t _b - 2*e or	$B_{f}' = W_{u} + W_{te} + 2^{*}$	t_b - 2*e (for concrete base)	
	Fv		Σ vertical forces (using 100% $W_s \& W_a$)		
	weight of base		t _b * γ _b		
	Mv	Σ mome	ents from vertical forces (u	sing 100% W _s & W _a)	
	M _H		Σ moments from horizor	ntal forces	
	е		(w _u + w _{te})/2 - (M _V - M	Ин)/F∨	
	B _f ' (granular base)		$w_{u} + w_{te} + t_{b} - 2^{2}$	*e	
	B _f ' (concrete base)		$w_{u} + w_{te} + 2^{*}t_{b} - 2^{*}t_{b}$	2*e	
(contact pressure q _c		$F_V / B_f' + t_b^* \gamma_b$		
be	earing resistance q _{ut}	[0	$t^*N_c + (h_e + t_b)^* \gamma_{found} N_q + 0.$	5*γ _{found} *B _f '*N _γ]	

The safety factor for bearing should be greater than 2

check that FS > 2.0 with static earth pressure loads and surcharge loads check that FS > 1.5 with static earth pressure loads and seismic loads

q_{ult} / q_c

STONE STRONG SYSTEMS'			Page	15/15
Project Gravity Wall Design Methodology	Project # 20004.00	Date	2/20/20	

Internal Analysis

Internal stability analysis is conducted for each section above the wall base. Since bearing conditions are addressed in the external stability analysis, only topping and shear failures are evaluated.

Toppling is evaluated similarly to external overturning analysis, except that the overturning point is set in 1 inch (25 mm) to account for face rounding.

 $FS = M'_V / M_H$

check that FS > 1.5 with static earth pressure loads and surcharge loads

check that FS > 1.13 with static earth pressure loads and seismic loads

Shear, or sliding, resistance is calculated based on the interface shear test (see interaction test reports for complete test data)

 $R_s = [S_i + (W + P_v + Q_{iv})^* \tan (35.2^\circ)]$ where $S_i = 362$ lb/ft or 5.28 kN/m

 $FS = R_s / F_H$

check that FS > 1.5 with static earth pressure loads and surcharge loads

check that FS > 1.13 with static earth pressure loads and seismic loads

At a minimum, internal stability should be evaluated at each change in block width (including any tail extension), at the base of any dual-face units, and for the top course(s) if a surcharge or lateral load is applied.

Project

ASD Example Calculations

2/20/20

Date

Wall Configuration (all weights per foot along length of wall)

External Stability Analysis

Modular Units		dular Units Setback (in) Concrete (/ft.) Un		Concrete (/ft.) Unit Fill		ll (/ft.)	Soil Wedge (/ft.)			
unit	w (in)	h (ft)	face	tail	W♭ (Ib)	x₀ (in)	W _a (lb)	x _a (in)	W _s (lb)	x₅ (in)
6-28	28.0	1.50	16.0	-42.0	238	28.8	183	30.0	63	47.1
6-28	28.0	1.50	14.0	-44.0	238	26.8	183	28.0	217	50.1
6	44.0	1.50	12.0	-30.0	375	33.0	301	35.5	151	61.8
24	44.0	3.00	8.0	-34.0	750	29.2	594	32.8	792	66.9
24-86	86.0	3.00	4.0	4.0	950	44.0	1,621	49.1	0	0.0
24-86	86.0	3.00	0.0	0.0	950	40.0	1,621	45.1	0	0.0

Weight and Center of Gravity of Wall Components

W_b = 950+950+750+375+238+238 = 3,500 lb/ft W_a = 1,621+1,621+594+301+183+183 = 4,503 lb/ft W_s = 792+151+217+63 = 1,224 lb/ft Total Wall Weight = 3,500+4,503+1,224 = 9,227 lb/ft

 $x_b = (950*40.0+950*44.0+750*29.2+375*33.0+238*26.8+238*28.8) / 3,500 = 36.4$ in x_a = (1,621*45.1+1,621*49.1+594*32.8+301*35.5+183*28.0+183*30.0) / 4,503 = 43.0 in $x_s = (792*66.9+151*61.8+217*50.1+62*47.1) / 1,224 = 62.3$ in

Earth Pressure Components

 $\omega' = \arctan(-42/12/13.5) = -14.53^{\circ}$ $\delta = 0.75^{*}30 = 22.5^{\circ}$ $\cos^2(30-14.53)$ $K_{a} = \frac{1}{\cos^{2}(-14.53)\cos(-14.53-22.5)\left[1 + \sqrt{\frac{\sin(30+22.5)\sin(30-0)}{\cos(-14.53-22.5)\cos(-14.53+0)}}\right]}$ $K_a = 0.421$ $P_h = 0.5*0.421*120*(12.0)^{2*}\cos(22.5+14.53) = 3,679 \text{ lb}$ $P_v = 0.5*0.421*120*(12.0)^{2*}sin(22.5 + 14.53) = 2,776 lb$ $Q_{lh} = 0.421*150*12.0*\cos(22.5 + 14.53) = 681 \text{ lb}$ $Q_{iv} = 0.421*150*12.0*sin(22.5 + 14.53) = 514$ lb x_P = (13.5/3)*tan(-14.53)+86/12 = 6.00 ft $y_P = 13.5/3 = 4.50 \text{ ft}$ $x_{Ql} = (13.5/2)$ *tan(-14.53)+86/12 =5.42 ft $y_{OI} = 13.5/2 = 6.75$ ft

2/9

Page

$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{use the smaller sliding resistance, R, of the following:} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{Determine composite friction coefficient across base:} \\ & \ensuremath{ \%_{void} = (1,621/110) / (950/145+1,621/110) = 0.6922} \\ & \ensuremath{ \%_{void} = (950/145) / (950/145+1,621/110) = 0.3078} \\ & \ensuremath{ \mu_{b} = 0.6922*tan(35)+0.3078*0.8*tan(40) = 0.691} \\ & \ensuremath{ R_{footing} = 0.691*(9,227+2,776+514) = 8,653 \text{ lb/ft}} \\ & \ensuremath{ R_{soil} = (9,227+2,776+514+(86/12*9/12)*125)*tan(26)+((86+9)/12)*150} \\ & \ensuremath{ = 7,620 \text{ lb/ft}} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \ensuremath{ \text{rectors of Safety}} \\ \ensuremath{ \text{verturning}} \\ \ensuremath{ \text{FS} = [3,500^*(36.4/12)+0.8*4,503^*(43.0/12)+0.8*1,224^*(62.3/12)+2,776*6.00+514*5.42] / \\ & \ensuremath{ (3,679^*(4.50)+681*6.75) = 2.27 > 1.5 \end{array} \\ \end{array} \\ \begin{array}{l} \ensuremath{ \text{OK!!}} \end{array} \end{array} $	roject	ASD Example Calculations	Project # 20004.00	Date	2/20/20
Use the smaller sliding resistance, R, of the following: Determine composite friction coefficient across base: $\%_{void} = (1,621/110) / (950/145+1,621/110) = 0.6922$ $\%_{concrete} = (950/145) / (950/145+1,621/110) = 0.3078$ $\mu_b = 0.6922*tan(35)+0.3078*0.8*tan(40) = 0.691$ R _{footing} = 0.691*(9,227+2,776+514) = 8,653 lb/ft R _{soll} = (9,227+2,776+514+(86/12*9/12)*125)*tan(26)+ ((86+9)/12)*150 = 7,620 lb/ft Actors of Safety <u>verturning</u> FS = [3,500*(36.4/12)+0.8*4,503*(43.0/12)+0.8*1,224*(62.3/12)+2,776*6.00+514*5.42] / (3,679*(4.50)+681*6.75) = 2.27 > 1.5 <u>OK!!</u> ding FS = 7,620/(3,679+681) = 1.75 > 1.5 <u>OK!!</u> e = (86/12)/2-[(3,500*(36.4/12)+4,503*(43.0/12)+1,224*(62.3/12)+2,776*6.00+514*5.42) - (3,679*4.50+681*6.75)] / (3,500+4,503+1,224+2,776+514)) = 1.08 ft Br' = (86+9)/12 - 2*1.08 = 5.76 ft. q _c = (9,227+2,776+514) / 5.76 + 9/12*125 = 2,266 psf Bearing Factors (Vesic): N _c = 22.25 N _q = 11.85 N _y = 12.54 q _{utt} = 150*22.25+((9+9)/12)*125*11.85+0.5*125*5.76*12.54 = 10,076 psf			20004.00		2/20/20
Determine composite friction coefficient across base: $\$_{void} = (1,621/110) / (950/145+1,621/110) = 0.6922$ $\$_{vooncrete} = (950/145) / (950/145+1,621/110) = 0.3078$ $µ_b = 0.6922^*tan(35)+0.3078^*0.8^*tan(40) = 0.691$ $R_{tooling} = 0.691^*(9,227+2,776+514) = 8,653$ lb/ft $R_{soil} = (9,227+2,776+514+(86/12*9/12)*125)^*tan(26)+ ((86+9)/12)^*150$ = 7,620 lb/ft actors of Safety <u>verturning</u> $FS = [3,500^*(36.4/12)+0.8^*4,503^*(43.0/12)+0.8^*1,224^*(62.3/12)+2,776^*6.00+514^*5.42] / (3,679^*(4.50)+681^*6.75) = 2.27 > 1.5$ <u>OK!!</u> binst constant is a start of the start	ase	Friction			
$\begin{split} & $		Use the smaller sliding resistance, R	, of the following:		
$R_{\text{footing}} = 0.691^*(9,227+2,776+514) = 8,653 \text{ ib/ft}$ $R_{\text{soil}} = (9,227+2,776+514+(86/12^*9/12)^*125)^* \tan(26) + ((86+9)/12)^*150 = 7,620 \text{ lb/ft}$ ictors of Safety $\frac{\text{verturning}}{\text{FS}} = [3,500^*(36.4/12) + 0.8^*4,503^*(43.0/12) + 0.8^*1,224^*(62.3/12) + 2,776^*6.00 + 514^*5.42] / (3,679^*(4.50) + 681^*6.75) = 2.27 > 1.5 \text{ OK!!}$ $\frac{\text{ding}}{\text{FS}} = 7,620/(3,679+681) = 1.75 > 1.5 \text{ OK!!}$ $e = (86/12)/2 - [(3,500^*(36.4/12) + 4,503^*(43.0/12) + 1,224^*(62.3/12) + 2,776^*6.00 + 514^*5.42) - (3,679^*4.50 + 681^*6.75)] / (3,500 + 4,503 + 1,224 + 2,776^*6.00 + 514^*5.42) - (3,679^*4.50 + 681^*6.75)] / (3,500 + 4,503 + 1,224 + 2,776^*5.14)) = 1.08 \text{ ft}$ $B_{f}' = (86+9)/12 - 2^*1.08 = 5.76 \text{ ft}.$ $q_{c} = (9,227+2,776+514) / 5.76 + 9/12^*125 = 2,266 \text{ psf}$ Bearing Factors (Vesic): $N_{c} = 22.25 \qquad N_{q} = 11.85 \qquad N_{\gamma} = 12.54$ $q_{ult} = 150^*22.25 + ((9+9)/12)^*125^*11.85 + 0.5^*125^*5.76^*12.54 = 10,076 \text{ psf}$		% _{void} = (1,621/110) / (950/145 % _{concrete} = (950/145) / (950/14	+1,621/110) = 0.6922 5+1,621/110) = 0.3078		
$= 7,620 \text{ lb/ft}$ actors of Safety $\frac{\text{yerturning}}{\text{FS}} = [3,500^{*}(36.4/12) + 0.8^{*}4,503^{*}(43.0/12) + 0.8^{*}1,224^{*}(62.3/12) + 2,776^{*}6.00 + 514^{*}5.42] / (3,679^{*}(4.50) + 681^{*}6.75) = 2.27 > 1.5 \text{OK!!}$ $\frac{\text{ding}}{\text{FS}} = 7,620/(3,679 + 681) = 1.75 > 1.5 \text{OK!!}$ $e = (86/12)/2 - [(3,500^{*}(36.4/12) + 4,503^{*}(43.0/12) + 1,224^{*}(62.3/12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] / (3,500 + 4,503 + 1,224^{*}(62.3/12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] / (3,500 + 4,503 + 1,224^{*}(23.12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] / (3,500 + 4,503 + 1,224^{*}(23.12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] / (3,500 + 4,503 + 1,224^{*}(23.12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] / (3,500 + 4,503 + 1,224^{*}(23.12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] / (3,500 + 4,503 + 1,224^{*}(23.12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] / (3,500 + 4,503 + 1,224^{*}(23.12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] / (3,500 + 4,503 + 1,224^{*}(23.12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] / (3,500 + 4,503 + 1,224^{*}(23.12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] / (3,500 + 4,503 + 1,224^{*}(23.12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] / (3,500 + 4,503 + 1,224^{*}(23.12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] / (3,500 + 4,503 + 1,224^{*}6.23/12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] / (3,500 + 4,503 + 1,224^{*}6.23/12) + 2,776^{*}6.00 + 514^{*}5.42) - (3,679^{*}4.50 + 681^{*}6.75)] = 1.08 \text{ ft}$ $P_{i} = (86/12)/2 - (16,61) +$			()		
$FS = [3,500^{*}(36.4/12)+0.8^{*}4,503^{*}(43.0/12)+0.8^{*}1,224^{*}(62.3/12)+2,776^{*}6.00+514^{*}5.42] / (3,679^{*}(4.50)+681^{*}6.75) = 2.27 > 1.5 OK!!$ $FS = 7,620/(3,679+681) = 1.75 > 1.5 OK!!$ $FS = 1.5 OK!$ $FS = 0.000 + 0.0$			2)*125)*tan(26)+ ((86+9)/12) [;]	*150	
$FS = [3,500^{*}(36.4/12)+0.8^{*}4,503^{*}(43.0/12)+0.8^{*}1,224^{*}(62.3/12)+2,776^{*}6.00+514^{*}5.42] / (3,679^{*}(4.50)+681^{*}6.75) = 2.27 > 1.5 $ $OK!!$ ding $FS = 7,620/(3,679+681) = 1.75 > 1.5 $ OK!! earing $e = (86/12)/2 - [(3,500^{*}(36.4/12)+4,503^{*}(43.0/12)+1,224^{*}(62.3/12)+2,776^{*}6.00+514^{*}5.42) - (3,679^{*}4.50+681^{*}6.75)] / (3,500+4,503+1,224+2,776+514)) = 1.08 \text{ ft}$ $B_{f} = (86+9)/12 - 2^{*}1.08 = 5.76 \text{ ft}.$ $q_{c} = (9,227+2,776+514) / 5.76 + 9/12^{*}125 = 2,266 \text{ psf}$ Bearing Factors (Vesic): $N_{c} = 22.25 $ $N_{q} = 11.85 $ $N_{\gamma} = 12.54$ $q_{ult} = 150^{*}22.25 + ((9+9)/12)^{*}125^{*}11.85 + 0.5^{*}125^{*}5.76^{*}12.54 = 10,076 \text{ psf}$	acto	rs of Safety			
$(3,679^{*}(4.50)+681^{*}6.75) = 2.27 > 1.5 OK!!$ $FS = 7,620/(3,679+681) = 1.75 > 1.5 OK!!$ earing $e = (86/12)/2 \cdot [(3,500^{*}(36.4/12)+4,503^{*}(43.0/12)+1,224^{*}(62.3/12)+2,776^{*}6.00+514^{*}5.42) - (3,679^{*}4.50+681^{*}6.75)] / (3,500+4,503+1,224+2,776+514)) = 1.08 \text{ ft}$ $B_{f} = (86+9)/12 - 2^{*}1.08 = 5.76 \text{ ft.}$ $q_{c} = (9,227+2,776+514) / 5.76 + 9/12^{*}125 = 2,266 \text{ psf}$ Bearing Factors (Vesic): $N_{c} = 22.25 \qquad N_{q} = 11.85 \qquad N_{Y} = 12.54$ $q_{ult} = 150^{*}22.25 + ((9+9)/12)^{*}125^{*}11.85 + 0.5^{*}125^{*}5.76^{*}12.54 = 10,076 \text{ psf}$)verti	urning			
$FS = 7,620/(3,679+681) = 1.75 > 1.5 OK!!$ e = (86/12)/2-[(3,500*(36.4/12)+4,503*(43.0/12)+1,224*(62.3/12)+2,776*6.00+514*5.42) - (3,679*4.50+681*6.75)] / (3,500+4,503+1,224+2,776+514)) = 1.08 ft $B_{f} = (86+9)/12 - 2*1.08 = 5.76 \text{ ft.}$ $q_{c} = (9,227+2,776+514) / 5.76 + 9/12*125 = 2,266 \text{ psf}$ Bearing Factors (Vesic): $N_{c} = 22.25 \qquad N_{q} = 11.85 \qquad N_{\gamma} = 12.54$ $q_{ult} = 150*22.25 + ((9+9)/12)*125*11.85+0.5*125*5.76*12.54 = 10,076 \text{ psf}$				2,776*6.00+{	514*5.42] /
$e = (86/12)/2 - [(3,500*(36.4/12)+4,503*(43.0/12)+1,224*(62.3/12)+2,776*6.00+514*5.42) - (3,679*4.50+681*6.75)] / (3,500+4,503+1,224+2,776+514)) = 1.08 \text{ ft}$ $B_{f}' = (86+9)/12 - 2*1.08 = 5.76 \text{ ft.}$ $q_{c} = (9,227+2,776+514) / 5.76 + 9/12*125 = 2,266 \text{ psf}$ Bearing Factors (Vesic): $N_{c} = 22.25 \qquad N_{q} = 11.85 \qquad N_{\gamma} = 12.54$ $q_{ult} = 150*22.25 + ((9+9)/12)*125*11.85+0.5*125*5.76*12.54 = 10,076 \text{ psf}$	Sliding		OKI		
$e = (86/12)/2 - [(3,500*(36.4/12)+4,503*(43.0/12)+1,224*(62.3/12)+2,776*6.00+514*5.42) - (3,679*4.50+681*6.75)] / (3,500+4,503+1,224+2,776+514)) = 1.08 \text{ ft}$ $B_{f} = (86+9)/12 - 2*1.08 = 5.76 \text{ ft.}$ $q_{c} = (9,227+2,776+514) / 5.76 + 9/12*125 = 2,266 \text{ psf}$ Bearing Factors (Vesic): $N_{c} = 22.25 \qquad N_{q} = 11.85 \qquad N_{\gamma} = 12.54$ $q_{ult} = 150*22.25 + ((9+9)/12)*125*11.85+0.5*125*5.76*12.54 = 10,076 \text{ psf}$		FS = 7,020/(3,079+001) = 1.75 > 1.5			
$\begin{array}{l} (3,679^{*}4.50+681^{*}6.75)] / (3,500^{+}4,503^{+}1,224^{+}2,776^{+}514)) = 1.08 \ ft \\ B_{f}' = (86^{+}9)/12 - 2^{*}1.08 = 5.76 \ ft. \\ q_{c} = (9,227^{+}2,776^{+}514) / 5.76^{+}9/12^{*}125 = 2,266 \ psf \\ Bearing Factors (Vesic): \\ N_{c} = 22.25 \qquad N_{q} = 11.85 \qquad N_{\gamma} = 12.54 \\ q_{ult} = 150^{*}22.25^{+}((9^{+}9)/12)^{*}125^{*}11.85^{+}0.5^{*}125^{*}5.76^{*}12.54 = 10,076 \ psf \end{array}$	Bearir	ng			
$\begin{aligned} q_c &= (9,227+2,776+514) \ / \ 5.76 \ + \ 9/12^*125 \ = \ 2,266 \ \text{psf} \\ \text{Bearing Factors (Vesic):} \\ N_c &= 22.25 \qquad N_q \ = \ 11.85 \qquad N_\gamma \ = \ 12.54 \\ q_{ult} \ = \ 150^*22.25 \ + ((9+9)/12)^*125^*11.85 \ + \ 0.5^*125^*5.76^*12.54 \ = \ 10,076 \ \text{psf} \end{aligned}$		(3,679*4.50+681*6.75)] / (3,5			-514*5.42) -
Bearing Factors (Vesic): $N_c = 22.25$ $N_q = 11.85$ $N_\gamma = 12.54$ $q_{ult} = 150^{*}22.25 + ((9+9)/12)^{*}125^{*}11.85 + 0.5^{*}125^{*}5.76^{*}12.54 = 10,076$ psf			*125 = 2 266 nsf		
$N_c = 22.25$ $N_q = 11.85$ $N_\gamma = 12.54$ $q_{ult} = 150^*22.25 + ((9+9)/12)^*125^*11.85 + 0.5^*125^*5.76^*12.54 = 10,076 \text{ psf}$			120 - 2,200 por		
FS = 10,076/2,266 = 4.45 > 2.0 <u>OK!!</u>		N _c = 22.25 N _q = 11)76 psf	
		FS = 10,076/2,266 = 4.45 > 2.0 OK	<u>(11</u>		

	SYSTEMS'		Page	4/9
Project A	ASD Example Calculations	Project # 20004.00	Date 2/20/20	

Internal Stability Analysis

Internal stability should be checked at each change in block width, at all dual-face unit, and at the top unit at a minimum. The following is taken at the first change from 24-86 to 24SF. Internal stability of the block stack above this interface is calculated as follows:

М	Modular Units		lar Units Setback (in) Co		Concre	te (/ft.)	Unit Fill (/ft.)		Soil Wedge (/ft.)	
unit	w (in)	h (ft)	face	tail	W _b (lb)	x _b (in)	W _a (lb)	x _a (in)	W _s (lb)	x _s (in)
6-28	28.0	1.50	8.0	-8.0	238	19.8	183	21.0	41	37.0
6-28	28.0	1.50	6.0	-10.0	238	17.8	183	19.0	151	38.6
6	44.0	1.50	4.0	4.0	375	24.0	301	26.5	0	0.0
24	44.0	3.00	0.0	0.0	750	20.2	594	23.8	0	0.0

Wall Configuration (all weights per foot along length of wall)

Weight and Center of Gravity of Wall Components

 $W_b = 750+375+238+238 = 1,600 \text{ lb/ft}$ $W_a = 594+301+183+183 = 1,261 \text{ lb/ft}$ $W_s = 151+41 = 193 \text{ lb/ft}$ Total Wall Weight = 1,600+1,261+193 = 3,054 lb/ft

 $x_b = (750*20.2+375*24.0+238*17.8+238*19.8)/1,600 = 20.7$ in $x_a = (594*23.8+301*26.5+183*19.0+183*21.0)/1,261 = 23.3$ in $x_s = (151*38.6+41*37.0)/193 = 38.3$ in

Earth Pressure Components

$$\begin{split} \omega' &= \arctan(-8/12/7.5) = -5.08^{\circ} & \delta = 0.75^*30 = 22.5^{\circ} \\ K_{a} &= \frac{\cos^2(30 + -5.08)}{\cos^2(-5.08)\cos(-5.08 - 22.5) \left[1 + \sqrt{\frac{\sin(30 + 22.5)\sin(30 - 0)}{\cos(-5.08 - 22.5)\cos(-5.08 + 0)}}\right]} \\ K_{a} &= 0.335 \\ P_{h} &= 0.5^*0.335^*120^*(7.5)^{2*}\cos(22.5 + 5.08) = 1,003 \text{ lb} \\ P_{v} &= 0.5^*0.335^*120^*(7.5)^{2*}\sin(22.5 + 5.08) = 524 \text{ lb} \\ Q_{lh} &= 0.335^*150^*7.5^*\cos(22.5 + 5.08) = 334 \text{ lb} \\ Q_{lv} &= 0.335^*150^*7.5^*\sin(22.5 + 5.08) = 175 \text{ lb} \\ x_{P} &= (7.5/3)^*\tan(-5.08) + 43/12 = 3.36 \text{ ft} & y_{P} &= 7.5/3 = 2.5 \text{ ft} \\ x_{Ql} &= (7.5/2)^*\tan(-5.08) + 43/12 = 2.61 \text{ ft} & y_{Ql} &= 7.5/2 = 3.75 \text{ ft} \end{split}$$

5/9 SYSTEMS Page Project Project # Date 20004.00 2/20/20 ASD Example Calculations Interface Shear $R_s = 362 + (3,054 + 524 + 175) \times \tan(35.2) = 3,009$ **Factors of Safety** Overturning/Toppling FS = [1,600*(20.7/12)+0.8*1,261*(23.3/12)+0.8*193*(38.3/12)+524*3.36+175*2.61] / (1,003*2.50+334*3.75) = 2.00 > 1.5<u>OK!!</u> Sliding/Internal Shear

<u>OK!!</u>

FS = 3,009/(1,003+334) = 2.25 > 1.5

All other interfaces OK!!

SYSTEM	S
--------	---

Project	Project #	Date
ASD Example Calculations	20004.00	2/20/20

Wall Configuration including CIP tail extension (all weights per foot along length of wall)

Μ	lodular Ur	nits	Setba	ick (in)	Concre	te (/ft.)	Unit Fi	ll (/ft.)	Soil Wedge (/ft.)		
unit	w (in)	h (ft)	face	tail	W _b (lb)	x₀ (in)	W _a (lb)	x _a (in)	W _s (lb)	x₅ (in)	
6	44.0	1.50	16.0	-14.0	375	37.0	301	39.5	25	61.2	
24	44.0	3.00	12.0	-18.0	750	33.2	594	36.8	308	61.8	
24	44.0	3.00	8.0	-22.0	750	29.2	594	32.8	616	63.3	
24	74.0	3.00	4.0	4.0	1,838	47.6	594	28.8	0	0.0	
24	74.0	3.00	0.0	0.0	1,838	43.6	594	24.8	0	0.0	

External Stability Analysis

Weight and Center of Gravity of Wall Components

$$\begin{split} W_b + W_{te} &= 750 + 2.5^* 3.0^* 145 + 750 + 2.5^* 3.0^* 145 + 750 + 375 = 5,550 \text{ lb/ft} \\ W_a &= 594 + 594 + 594 + 594 + 301 = 2,678 \text{ lb/ft} \\ W_s &= 616 + 308 + 25 = 949 \text{ lb/ft} \\ \text{Total Wall Weight} &= 5,500 + 2,678 + 949 = 9,176 \text{ lb/ft} \end{split}$$

 $\begin{aligned} x_{b+te} &= (1,838*43.6+1,838*47.6+750*29.2+750*33.2+375*37.0) \ / \ 5,550 = 41.1 \ in \\ x_a &= (594*24.8+594*28.8+594*32.8+594*36.8+301*39.5) \ / \ 2,678 = 31.8 \ in \\ x_s &= (616*63.3+308*61.8+25*61.2) \ / \ 949 = 62.8 \ in \end{aligned}$

$$\begin{split} \underline{\text{Earth Pressure Components}} \\ \omega' &= \arctan(-14/12/13.5) = -4.94^{\circ} \\ &\delta = 0.75^*30 = 22.5^{\circ} \\ K_{a} &= \frac{\cos^2(30 + 4.94)}{\cos^2(-4.94)\cos(-4.94 - 22.5)\left[1 + \sqrt{\frac{\sin(30 + 22.5)\sin(30 - 18.4)}{\cos(-4.94 - 22.5)\cos(-4.94 + 18.4)}}\right]^2 \\ K_{a} &= 0.456 \\ P_{h} &= 0.5^*(.456)^*120^*(13.5)^{2*}\cos(22.5 + 4.94) = 4,425 \text{ lb} \\ P_{v} &= 0.5^*(.456)^*120^*(13.5)^{2*}\sin(22.5 + 4.94) = 2,298 \text{ lb} \\ x_{P} &= (13.5/3)^*\tan(-4.94) + (74/12) = 5.78 \text{ ft} \\ y_{P} &= (13.5/3) = 4.5 \end{split}$$

ASD Example Calculations	Project # 20004.00	Date 2/20/20
se Friction		
Use the smaller sliding resistance,	R, of the following:	
Determine composite friction coeff	icient across base:	
% _{void} = (1,621/110) / (750/1	45+2.0*3.0+1,621/110) = 0.5688	8
	145+2.0*3.0+1,621/110) = 0.199	96
	$+2.0^{*}3.0+1,621/110) = 0.2316$	0.000
$\mu_b = 0.5088^{\circ} \tan(35) + 0.1990$ $R_{footing} = 0.606^{\circ}(9,176 + 2,298) = 6,90$	6*0.8*tan(40)+0.2316*tan(40) = 0 053.lb/ft	0.000
(3, 170, 2, 250) = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	555 16/11	
R _{soil} = (9,176+2,289+(74/12*9/12)*	125)*tan(26)+((74+9)/12)*150 =	6,916 lb/ft
ctors of Safety		
rerturning	(21 9/12)+0 9*040*/62 9/12)+2 2	200*5 701 / (1 125*1 5)
<u>rerturning</u> FS = [(5,550*(41.1/12)+0.8*2,678*	(31.8/12)+0.8*949*(62.8/12)+2,2	298*5.78] / (4,425*4.5)
rerturning	(31.8/12)+0.8*949*(62.8/12)+2,2	298*5.78] / (4,425*4.5)
r <u>erturning</u> FS = [(5,550*(41.1/12)+0.8*2,678* = 2.11 > 1.5 <u>OK!!</u> <u>ding</u>		298*5.78] / (4,425*4.5)
rerturning FS = [(5,550*(41.1/12)+0.8*2,678* = 2.11 > 1.5 <u>OK!!</u>		298*5.78] / (4,425*4.5)
rerturning FS = [(5,550*(41.1/12)+0.8*2,678* = 2.11 > 1.5 <u>OK!!</u> ding FS = 6,916/4,425 = 1.56 > 1.5 <u>O</u>		298*5.78] / (4,425*4.5)
$FS = [(5,550*(41.1/12)+0.8*2,678*) = 2.11 > 1.5 OK!!$ $\frac{ding}{FS} = 6,916/4,425 = 1.56 > 1.5 O$ $\frac{aring}{aring}$	<u>K!!</u>	
rerturning FS = [(5,550*(41.1/12)+0.8*2,678* = 2.11 > 1.5 <u>OK!!</u> ding FS = 6,916/4,425 = 1.56 > 1.5 <u>O</u>	<u>K!!</u> 78*(31.8/12)+949*(62.8/12)+2,2	
FS = [(5,550*(41.1/12)+0.8*2,678*) = 2.11 > 1.5 $OK!!$ $FS = 6,916/4,425 = 1.56 > 1.5 $ G $FS = 6,916/4,425 = 1.56 > 1.5 $ G $FS = 6,916/4,425 = 1.56 > 1.5 $ G $FS = 6,916/4,425 = 1.56 > 1.5 $ G $FS = 6,916/4,425 = 1.56 > 1.5 $ G $FS = 6,916/4,425 = 1.56 > 1.5 $ G $FS = 6,916/4,425 = 1.56 > 1.5 $ G $FS = 6,916/4,425 = 1.56 > 1.5 $ G $FS = 6,916/4,425 = 1.56 > 1.5 $ G $FS = 6,916/4,425 = 1.56 > 1.5 $ G	<u>K!!</u> 78*(31.8/12)+949*(62.8/12)+2,2 949+2,298) = 0.95	
FS = [(5,550*(41.1/12)+0.8*2,678*)] $= 2.11 > 1.5 OK!!$ $FS = 6,916/4,425 = 1.56 > 1.5 O$	<u>K!!</u> 78*(31.8/12)+949*(62.8/12)+2,2 949+2,298) = 0.95	
FS = [(5,550*(41.1/12)+0.8*2,678*)] $= 2.11 > 1.5 OK!!$ $FS = 6,916/4,425 = 1.56 > 1.5 O$ $FS = 6,916/4,425 = 1.56 = 1.56 O$ $FS = 6,916/4,425 O$ $FS = 6,916/4,425$	<u>K!!</u> 78*(31.8/12)+949*(62.8/12)+2,2 949+2,298) = 0.95 5.01)+(9/12)*125 = 2,385 psf	
$\frac{\text{verturning}}{\text{FS}} = [(5,550^{*}(41.1/12)+0.8^{*}2,678^{*})] = 2.11 > 1.5 OK!!$ $\frac{\text{ding}}{\text{FS}} = 6,916/4,425 = 1.56 > 1.5 O$ $\frac{\text{varing}}{\text{e}} = (74/12)/2 - [5,550^{*}(41.1/12)+2,6) + (4,425^{*}4.5)]/(5,550+2,678+1) + (5,550+1) + (5,550+1) + (5,550+1) + (5,550+1) + (5,550+1) + (5,550+1) + (5,550+1) + (5,550+1) + (5,550+1) + (5,550+1) + (5,550+1) + (5,550+1) + (5,550+1) + (5,50+1$	<u>K!!</u> 78*(31.8/12)+949*(62.8/12)+2,2 949+2,298) = 0.95 5.01)+(9/12)*125 = 2,385 psf 11.85 N _γ = 12.54	298*5.78)-
FS = [(5,550*(41.1/12)+0.8*2,678*)] $= 2.11 > 1.5 OK!!$ $FS = 6,916/4,425 = 1.56 > 1.5 O$ $FS = 6,916/4,425 = 1.56 = 1.56 O$ $FS = 6,916/4,425 O$ $FS = 6,916/4,425$	<u>K!!</u> 78*(31.8/12)+949*(62.8/12)+2,2 949+2,298) = 0.95 5.01)+(9/12)*125 = 2,385 psf 11.85 N _γ = 12.54	298*5.78)-

SYSTEMS		Page	313
ASD Example Calculations	Project # 20004.00	Date 2/20/20	

Internal Stability Analysis

Internal stability should be checked at each change in block width, at all dual-face unit, and at the top unit at a minimum. The following is taken at the change from 24SF unit with tail extension to a 24SF unit. Internal stability of the block stack above this interface is calculated as follows:

Wall Configuration	(all weights	per foot along	length of wall)
- 5	\ J	. J	

м	odular Ur	nits	Setbac	k (in)	Concre	te (/ft.)	Unit Fi	ll (/ft.)
unit	w (in)	h (ft)	face	tail	W₅ (lb)	x _b (in)	W _a (lb)	x _a (in)
6	44.0	1.50	8.0	8.0	375	28.0	301	30.5
24	44.0	3.00	4.0	4.0	750	24.2	594	27.8
24	44.0	3.00	0.0	0.0	750	20.2	594	23.8

Weight and Center of Gravity of Wall Components

 W_b = 750+750+375 = 1,875 lb/ft W_a = 594+594+301 = 1,489 lb/ft Total Wall Weight = 1,875+1,489 = 3,364 lb/ft

 x_b = (750*20.2+750*24.2+375*28.0) / 1,875 =23.4 in x_a = (594*248+594*28.8+296*35.5) / 1,489 = 26.8 in

Earth Pressure Components

 $\omega' = 6.34^{\circ}$

 $\delta = 0.5^*30 = 15.0^\circ$

 $K_{a} = \frac{\cos^{2}(30+6.34)}{\cos^{2}(6.34)\cos(6.34-15.0)\left[1+\sqrt{\frac{\sin(30+15.0)\sin(30-18.4)}{\cos(6.34-15.0)\cos(6.34+18.4)}}\right]^{2}}$

 $K_a = 0.340$

 $P_h = 0.5^* 0.340^* 120^* (7.5)^{2*} \cos(15-6.34) = 1,135 \text{ lb}$ $P_v = 0.5^* 0.340^* 120^* (7.5)^{2*} \sin(15-6.34) = 173 \text{ lb}$

 $x_P = (7.5/3)^* \tan(6.34) + (44/12) = 3.94 \text{ ft}$ $y_P = 7.5/3 = 2.5 \text{ ft}$

Interface Shear

R_s = 362+(3,364+173)*tan(35.2) = 2,857 lb

 Subscription
 Sectors of Safety

 Overturning/Toppling
 $FS = [1,875^*(23.4/12) + 0.8^*1,489^*(26.7/12) + 173^*3.94] / (1,135^*2.5) = 2.46 > 1.5$ OK!!

 Sliding/Internal Shear
 FS = 2,857/1,135 = 2.52 > 1.5
 OK!!

 All other interfaces OK!!
 OK!!

a/a

STONE STRONG GRAVITY CALCULATIONS - ver 6.0

Project Name:	Example Calculations
Location:	
Job#:	20004.00
Section:	Example #1
Calc by:	D Thiele

Page 1 of 3 2/20/20 15:49

<u>Notes</u>	13.5 tall wall with extended precast units, battered face
	level back slope, 150 psf parking lot surcharge
	External Stability

Wall C	onfiguration	<u>1</u>	setba	ick (in)	modula	ar units	uni	t fill	soil w	edge	<u>CIP Ex</u>	tension	Internal S	tability FS	<u>Seismic Ir</u>	ternal FS	<u>5</u>
unit	w (in)	h (ft)	face	tail	Wb (lb)	xb (in)	Wa (lb)	xa (in)	Ws (lb)	xs (in)	we (in)	h _t	Topple	Shear	Topple	Shear	_
6-28	28.0	1.50	16.0	-42.0	238	28.8	183	30.0	63	47.1			6.60	6.47			OK!
6-28	28.0	1.50	14.0	-44.0	238	26.8	183	28.0	217	50.1			3.01	3.87			OK!
6	44.0	1.50	12.0	-30.0	375	33.0	301	35.5	151	61.8			3.53	3.02			OK!
24	44.0	3.00	8.0	-34.0	750	29.2	594	32.8	792	66.9			2.00	2.25			OK!
24-86	86.0	3.00	4.0	4.0	950	44.0	1,621	49.1	0	0.0			2.98	2.38			OK!
24-86	86.0	3.00	0.0	0.0	950	40.0	1,621	45.1	0	0.0							
													External	Stability	OK!		
	86.0	13.50	16.0	-42.0	3,500	36.4	4,503	43.0	1,224	62.3	9,227						
	r		1														
	ckfill height	13.50		ω=	6.34	•			e friction	•							
exp	osed height	12.75	feet	ω'=	-14.53	deg		δ	22.5	deg							
				1.												-	
<u>Retain</u>	ed Soll	γ		pcf		Founda	<u>tion Soil</u>	γ		-				bedment			
		φ	30	deg				ф		deg				hickness		in	
								c'	150	pst				material			
														toe slope		H:1V slo	pe
Aggro	oto Unit Cil						e bearing if specified)	pressure		pst			.				
Aggreg	ate Unit Fil	<u>-</u>	γ	110	pct	(n specineu)		(net)		C	composit	e friction c	oefficient	μ_{b}	0.69	
		©	S	то	N	E	S T	R O	N G	;	S Y	S T	E M	S			

©

STONE STRONG GRAVITY CALCULATIONS - ver 6.0

Project Name:	Example Calculations
Location:	
Job#:	20004.00
Section:	Example #1
Calc by:	D Thiele

Page 1 of 3

©

STONE STRONG GRAVITY CALCULATIONS - ver 6.0

Project Name:	Example Calculations
Location:	
Job#:	20004.00
Section:	Example #2
Calc by:	D Thiele

Page 1 of 3 2/20/20 15:49

Notes 13.5 tall wall with CIP tail extension, battered face 3H:1V backslope

External Stability

©

S т

STONE STRONG GRAVITY CALCULATIONS - ver 6.0

Project Name:	Example Calculations
Location:	
Job#:	20004.00
Section:	Example #2
Calc by:	D Thiele

Page 1 of 3 2/20/20 15:49

Notes 13.5 tall wall with CIP tail extension, battered face 3H:1V backslope Internal Stability

Ο Ν Е

2/20/20 15:49

STONE STRONG GRAVITY CALCULATIONS - ver 6.0

