Project	Gravity Wall Design - LRFD	Project \# 20004.00

GRAVITY WALL DESIGN - LRFD

STONE STRONG PRECAST MODULAR BLOCK

This engineering section presents information for design of Stone Strong retaining walls in a gravity configuration using Load and Resistance Factor Design (LRFD) procedures.
The design methodologies presented conform substantially to AASHTO specifications (LRFD Bridge Specifications, $8^{\text {th }}$ Edition, 2017). This section includes the following documents:

LRFD Gravity Wall Design Methodology (17 pages)
Example LRFD Gravity Wall Calculations (22 pages)
Example LRFD Spreadsheet Output (12 pages)

The example calculations and example spreadsheet output match identical design conditions and are intended as verification of the spreadsheet method. Note that the Gravity Analysis Spreadsheet is available on the Stone Strong website.

Project \#		
20004.00	Date	$12 / 5 / 23$

GRAVITY WALL LRFD DESIGN METHODOLOGY STONE STRONG PRECAST MODULAR BLOCK

Evaluate gravity retaining wall using strength design approach (Load and Resistance Factor Design) following AASHTO analytical techniques - refer to:

AASHTO LRFD Bridge Design Specifications, $9^{\text {th }}$ Edition 2020
Additional analytical methods and theories are taken from previous AASHTO specifications and other FHWA guidelines - refer to:

Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes, NHI-10-024

AASHTO Standard Specifications for Highway Bridges 2002, $17^{\text {th }}$ Addition

Properties of Soil/Aggregate

Soil and material properties should be determined for the specific materials to be used:
unit fill - $\gamma_{u}=110 \mathrm{pcf}\left(17.3 \mathrm{kN} / \mathrm{m}^{3}\right)$ max (see AASHTO 2002 5.9.2) \& ϕ_{u}
leveling base $-\gamma_{b} \& \phi_{b}$ for typical aggregate base (or concrete base may be substituted)
retained soil $-\gamma \& \phi$ by site conditions (where select backfill is used, select material must encompass entire retained soil influence zone)
foundation soil - $\gamma \phi \& c$ by site conditions
interface angle (see AASHTO LRFD Table C3.11.5.9-1)
For stepped modules, when the block width varies within a vertical section, $\delta=3 / 4 \phi$
For cases where all blocks are substantially uniform width, $\delta=1 / 2 \phi$
Note: infill weight is reduced to account for infill not engaged by modular units in overturning. Only 80% of the weight of aggregate is included in the overturning calculations, W' (see AASHTO LRFD 11.11.4.4)

Precast Modular Unit Geometric Properties

Block Library - Imperial Units

Block Type	Description	Conc. Wt. (Ibs)	Void Vol. (ft ${ }^{3}$)	Length (ft)	Height (ft)	Unit Width (in)	Conc. Cen. of Gravity x_{b} (in)	Void Cen. of Gravity $\mathbf{x a}_{\mathrm{a}}$ (in)
6-28	$\begin{aligned} & \text { 6SF-28 unit } \\ & \text { (6 square feet) } \end{aligned}$	950	6.65	4	1.50	28	12.8	14.0
6-44	6SF-44 unit (6 square feet)	1,500	10.95	4	1.50	44	21.0	23.5
24-44	24SF-44 unit (24 square feet)	6,000	43.21	8	3.00	44	21.2	24.8
24-ME	24SF Mass Extender unit	10,000	44.94	8	3.00	56	32.7	25.8
24-62	24SF-62 unit	6,800	76.05	8	3.00	62	29.1	33.0
24-86	24SF-86 unit	7,600	117.90	8	3.00	86	40.0	45.1
D150	$\begin{gathered} \hline \text { D150 Assembly } \\ (24 \text { SF-150 }) \\ \hline \end{gathered}$	12,650	210.32	8	3.00	150	74.5	75.5

dimensions are for battered units - for vertical face 24SF units, the width and center of gravity dimensions are all reduced by 1 inch

Block Library - Metric Units

Block Type	Description	Conc. $\mathbf{W t .}$ $\mathbf{(k N})$	Void Vol. $\left(\mathbf{m}^{3}\right)$	Length (\mathbf{m})	Height (\mathbf{m})	Unit Width $(\mathbf{m m})$	Conc. Cen. of Gravity $\mathbf{x}_{\mathbf{b}}(\mathbf{m m})$	Void Cen. of Gravity $\mathbf{x}_{\mathbf{a}}(\mathbf{m m})$
$6-28$	6SF-28 unit 6 square feet)	4.23	0.19	1.22	0.46	711	324	356
$6-44$	6SF-44 unit (6 square feet)	6.67	0.31	1.22	0.46	1,118	533	597
$24-44$	24SF-44 unit $(24$ square feet)	26.69	1.22	2.44	0.91	1,118	538	630
24-ME	24SF Mass Extender unit	44.48	1.28	2.44	0.91	1,422	831	655
$24-62$	24SF-62 unit	30.25	2.16	2.44	0.91	1,575	739	838
$24-86$	24SF-86 unit	33.80	3.35	2.44	0.91	2,184	1,016	1,146
D150	D150 Assembly (24SF-150)	56.27	5.96	2.44	0.91	3,810	1,892	1,918

dimensions are for battered units - for vertical face 24 SF units, the width and center of gravity dimensions are all reduced by 25 mm

Wall stability calculations are performed per unit length of wall, so all weights and forces are expressed per foot or m of wall length.

Typical gravity wall configuration with precast stepped modules, variables, and nomenclature:

Note that surcharge loads over the top of the wall are treated separately from surcharge behind the wall.

Project LRFD Design Methodology	Project \# 20004.00	Date $12 / 5 / 23$

Typical gravity wall with cast in place tail extension, variables, and nomenclature:

Project LRFD Design Methodology	Project \# 20004.00	Date $12 / 5 / 23$

Wall units that vary in width are referred to as "stepped" modules. Wider wall units are typically placed at the bottom of the wall. In addition to using wider precast units, the stability of a gravity wall can be improved by using cast-in-place tail extensions to increase the width of the units. The width of the CIP extension is not limited, but it is recommend that the height be at least 2 times the width to provide shear through the tail openings (unless connecting with reinforcing steel).

Wall batter

The block units may be installed with either a vertical face or a battered face. In vertical applications, the units are be installed with no batter or setback between units, $\omega=0^{\circ}$

In a battered configuration, the 24-44, 24-62, 24-86, and 24-ME units are 36 inches (914 mm) high and the next block atop a 24 SF block will batter back 4 inches (102 mm). The 6-44 and 6-28 units are 18 inches (457 mm) tall, and the next block atop a 6 SF block will batter 2 inches (51 mm).
These blocks may be interchanged within a wall stack, but the batter is determined by the height of the unit below.

4 in. setback per 24 SF block (36 in. tall)
2 in. setback per 6 SF block (18 in. tall)

102 mm setback per 24 SF block (914 mm tall) 51 mm setback per 6 SF block (457 mm tall)

The face batter is calculated as:

$$
\begin{array}{ll}
\omega=\arctan (4 / 36)=6.34^{\circ} & \omega=\arctan (102 / 914)=6.34^{\circ} \\
\text { or } \omega=\arctan (2 / 18)=6.34^{\circ} & \omega=\arctan (51 / 457)=6.34^{\circ}
\end{array}
$$

For uniform modules, the batter of the back face matches the batter of the front face. For stepped modules, the batter is recalculated along the back of the wall from the rear of the bottom unit to the rear of the top of the wall (see AASHTO LRFD 3.11.5.9). Use ω^{\prime} in Coulomb equation and earth pressure component calculations. To calculate ω ' it is necessary to know the effective setback width, w_{s}, which is the horizontal distance between the back edge of the top block and the back edge of the lower unit including any tail extension. w_{s} is negative when the mass extender projects further than the back of the top block. Knowing this distance and the height of wall:

$$
\omega^{\prime}=\arctan \left(\omega_{\mathrm{s}} / \mathrm{H}_{\mathrm{w}}\right)
$$

Base Thickness/Embedment

The type and thickness of wall base or leveling pad and depth of embedment can vary by site requirements. A granular base with a thickness of 9 inches is commonly used, but the thickness can be adjusted to reduce the contact pressure. A concrete leveling pad or footing can also be used. The required embedment to the top of the base is related to the exposed height of the wall and by the slope at the toe, as well as other factors. The required embedment can be calculated for slopes steeper than 6H:1V using the following equation (see AASHTO LRFD Table C11.10.2.2-1):

$$
h_{e}=H^{\prime} /\left(20^{*} S / 6\right)
$$

where S is the run of the toe slope per unit fall and H^{\prime} is the exposed height

A minimum embedment of 12 inches (300 mm) for level toe and 24 inches (600 mm) for toe slopes of $4 \mathrm{H}: 1 \mathrm{~V}$ or steeper is recommended for highway applications (AASHTO LRFD 11.10.2.2)

LRFD Design Methodology

Project \#	20004.00	Date
		$12 / 5 / 23$

Weight of Wall

The weight of the wall includes the contributions of the blocks, the aggregate unit fill, the tail extension, and the soil wedge atop extended modules or tail extension

The weight of the tail extension is calculated:
$W_{\text {te }}=\left(W_{\text {te }} * H_{\text {te }}\right) * 145 \mathrm{pcf}\left(22.8 \mathrm{kN} / \mathrm{m}^{3}\right)$
(typical unit weight for concrete)
where w_{te} is the width of the tail extension and H_{te} is the height of the extension (both in ft .)

The angle of the batter (from vertical) of the soil wedge above the tail extension, ω_{s}, is calculated:

$$
\omega_{\mathrm{s}}=\arctan \left(-\mathrm{w}_{\mathrm{s}}^{\prime} / \mathrm{H}_{\text {wedge }}\right)
$$

The weight of soil in the wedge above the tail extension is calculated for the trapezoidal area of the wedge that lies behind each block
$h_{s}=$ height of the soil trapezoid behind the block (may differ from height of the block)
$\mathrm{w}_{\mathrm{u}}=$ width of the block
$h_{1}=$ dist. from the top of wall to top of the soil trapezoid behind the block
$\mathrm{h}_{2}=$ dist. from the top of wall to bottom of the soil trapezoid behind the block
$\mathrm{s}=$ dist. from the face of wall to face of the block
$\mathrm{s}_{\mathrm{u}}=$ dist. from the face of wall to back of the block $=\mathrm{s}+\mathrm{w}_{\mathrm{u}}$
$\mathrm{S}_{\mathrm{T}}=$ dist. from the face of wall to the back of top-most block of wall
$\mathrm{b}_{1}=$ length of top side of trapezoid of soil behind block $=\mathrm{h}_{1}{ }^{*} \tan \left(\omega_{\mathrm{s}}\right)+\left(\mathrm{S}_{\mathrm{T}}-\mathrm{S}_{\mathrm{u}}\right)$
$\mathrm{b}_{2}=$ length of bottom side of trapezoid of soil behind block $=\mathrm{h}_{2} * \tan \left(\omega_{\mathrm{S}}\right)+\left(\mathrm{S}_{\mathrm{T}}-\mathrm{S}_{\mathrm{u}}\right)$

The weight of the soil wedge above the tail extension behind each block, W_{s}, is calculated as the trapezoidal area multiplied by the lesser of the unit weight of the retained soil or the unit fill:

$$
\mathrm{W}_{\mathrm{s}}=\left[\mathrm{h}_{\mathrm{s}}^{*}\left(\mathrm{~b}_{1}+\mathrm{b}_{2}\right) / 2\right] *\left(\min \text { of } \gamma_{\mathrm{ret}} \text { or } \gamma_{\mathrm{u}}\right)
$$

The center of gravity of the trapezoidal wedge behind each block, measured from the face of the wall at the bottom course, is calculated:

$$
\begin{aligned}
& x_{s}=\left[\left(b_{1}{ }^{*} b_{2}+\left(b_{2}{ }^{2}-2^{*} b_{1}{ }^{*} b_{2}+b_{1}{ }^{2}\right) / 3\right) /\left(b_{1}+b_{2}\right)\right]+s+w_{u} \\
& y_{s}=\left[h_{s} / 3^{*}\left(2 b_{1}+b_{2}\right) /\left(b_{1}+b_{2}\right)\right]+H-h_{2}
\end{aligned}
$$

W_{s} is treated as aggregate infill subject to 80% limitations for overturning calculations (conservative)

Project \# 20004.00	Date	

Static Forces

Coulomb active earth pressure coefficient (see AASHTO LRFD 3.11.5.3)

$$
\mathrm{K}_{\mathrm{a}}=\frac{\cos ^{2}\left(\phi+\omega^{\prime}\right)}{\cos ^{2}\left(\omega^{\prime}\right) \cos \left(\omega^{\prime}-\delta\right)\left[1+\sqrt{\frac{\sin (\phi+\delta) \sin (\phi-\beta)}{\cos \left(\omega^{\prime}-\delta\right) \cos \left(\omega^{\prime}+\beta\right)}}\right]^{2}}
$$

As an alternate, a trial wedge technique may be used to determine the earth pressure forces acting on the modular wall.

Earth Load Components (see AASHTO LRFD 11.10.5.2)

Vertical forces:

$$
\begin{aligned}
& P_{v}=0.5 K_{a} \gamma H^{2 *} \sin \left(\delta-\omega^{\prime}\right) \\
& Q_{\mathrm{lv}}=K_{a} Q H^{*} \sin \left(\delta-\omega^{\prime}\right) \text { where } Q \text { is the effective surcharge in } \mathrm{psf}(\mathrm{kPa})
\end{aligned}
$$

Horizontal forces:

$$
\begin{aligned}
& P_{\mathrm{h}}=0.5 \mathrm{~K}_{\mathrm{a}} \gamma \mathrm{H}^{2 *} \cos \left(\delta-\omega^{\prime}\right) \\
& \mathrm{Q}_{\mathrm{h}}=\mathrm{K}_{\mathrm{a}} Q \mathrm{H}^{*} \cos \left(\delta-\omega^{\prime}\right) \text { where } Q \text { is the effective surcharge in } \mathrm{psf}(\mathrm{kPa})
\end{aligned}
$$

Resultants of earth load components:

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{P}}=\mathrm{H} / 3 \\
& \mathrm{x}_{\mathrm{P}}=(\mathrm{H} / 3)^{*} \tan \left(\omega^{\prime}\right)+\mathrm{w}_{\mathrm{u}} \\
& \mathrm{y}_{\mathrm{Ql}}=\mathrm{H} / 2 \\
& \mathrm{x}_{\mathrm{Q} 1}=(\mathrm{H} / 2)^{*} \tan \left(\omega^{\prime}\right)+\mathrm{w}_{\mathrm{u}}
\end{aligned}
$$

$$
\text { where } \mathrm{w}_{\mathrm{u}} \text { is the width of the bottom unit, including any tail extension }\left(\mathrm{w}_{\mathrm{te}}\right)
$$

Project LRFD Design Methodology	Project \# 20004.00	Date $12 / 5 / 23$

Weight Components

Vertical forces:
W_{b} - Weight of wall units
$\mathrm{W}_{\text {te }}$ - Weight of concrete tail extension, if used
W_{a} - Weight of infill aggregate (use 80% aggregate weight for overturning)
W_{s} - Weight of soil atop tail extension (use 80% aggregate weight for overturning)

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{b}}=\sum\left(\mathrm{W}_{\mathrm{b} 1}+\mathrm{W}_{\mathrm{b} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{bn}}\right) \\
& \mathrm{W}_{\mathrm{te}}=\Sigma\left(\mathrm{W}_{\mathrm{te} 1}+\mathrm{W}_{\mathrm{te} 2}+\cdots \cdots+\mathrm{W}_{\mathrm{te}}\right) \\
& \mathrm{W}_{\mathrm{a}}=\Sigma\left(\mathrm{W}_{\mathrm{a} 1}+\mathrm{W}_{\mathrm{a} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{an}}\right) \\
& \mathrm{W}_{\mathrm{s}}=\Sigma\left(\mathrm{W}_{\mathrm{s} 1}+\mathrm{W}_{\mathrm{s} 2}+\cdots \cdot++\mathrm{W}_{\mathrm{sn}}\right)
\end{aligned}
$$

Resultants of weight components:

The center of mass of the stack of blocks is calculated as:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{b}}=\sum\left(\mathrm{W}_{\mathrm{b} 1}{ }^{*} \mathrm{x}_{\mathrm{b} 1}+\mathrm{W}_{\mathrm{b} 2}{ }^{*} \mathrm{x}_{\mathrm{b} 2}+\cdots \cdot+\mathrm{W}_{\mathrm{bn}}{ }^{*} \mathrm{x}_{\mathrm{bn}}\right) / \sum\left(\mathrm{W}_{\mathrm{b} 1}+\mathrm{W}_{\mathrm{b} 2}+\cdots \cdot+\mathrm{W}_{\mathrm{bn}}\right) \\
& \mathrm{y}_{\mathrm{b}}=\sum\left(\mathrm{W}_{\mathrm{b} 1}{ }^{*} \mathrm{y}_{\mathrm{b} 1}+\mathrm{W}_{\mathrm{b} 2}{ }^{*} \mathrm{y}_{\mathrm{b} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{bn}}{ }^{*} \mathrm{y}_{\mathrm{bn}}\right) / \sum\left(\mathrm{W}_{\mathrm{b} 1}+\mathrm{W}_{\mathrm{b} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{bn}}\right)
\end{aligned}
$$

The center of mass of the aggregate fill is:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{a}}=\sum\left(\mathrm{W}_{\mathrm{a} 1}{ }^{*} \mathrm{x}_{\mathrm{a} 1}+\mathrm{W}_{\mathrm{a} 2}{ }^{*} \mathrm{x}_{\mathrm{a} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{an}}{ }^{*} \mathrm{x}_{\mathrm{an}}\right) / \sum\left(\mathrm{W}_{\mathrm{a} 1}+\mathrm{W}_{\mathrm{a} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{an}}\right) \\
& \mathrm{y}_{\mathrm{a}}=\sum\left(\mathrm{W}_{\mathrm{a} 1}{ } \mathrm{y}_{\mathrm{a} 1}+\mathrm{W}_{\mathrm{a} 2}{ }^{*} \mathrm{y}_{\mathrm{a} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{an}}{ }^{*} y_{\mathrm{an}}\right) / \sum\left(\mathrm{W}_{\mathrm{a} 1}+\mathrm{W}_{\mathrm{a} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{an}}\right)
\end{aligned}
$$

The center of mass of the soil wedge over the tail is:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{s}}=\sum\left(\mathrm{W}_{\mathrm{s} 1}{ }^{*} \mathrm{x}_{\mathrm{s} 1}+\mathrm{W}_{\mathrm{s} 2}{ }^{*} \mathrm{x}_{\mathrm{s} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{sn}}{ }^{*} \mathrm{x}_{\mathrm{sn}}\right) / \sum\left(\mathrm{W}_{\mathrm{s} 1}+\mathrm{W}_{\mathrm{s} 2}+\cdots \cdot+\mathrm{W}_{\mathrm{sn}}\right) \\
& \mathrm{y}_{\mathrm{s}}=\sum\left(\mathrm{W}_{\mathrm{s} 1}{ }^{*} \mathrm{y}_{\mathrm{s} 1}+\mathrm{W}_{\mathrm{s} 2}{ }^{*} \mathrm{y}_{\mathrm{s} 2}+\cdots \cdots \cdot+\mathrm{W}_{\mathrm{sn}}{ }^{*} \mathrm{y}_{\mathrm{sn}}\right) / \sum\left(\mathrm{W}_{\mathrm{s} 1}+\mathrm{W}_{\mathrm{s} 2}+\cdots \cdot \cdot+\mathrm{W}_{\mathrm{sn}}\right)
\end{aligned}
$$

The center of mass of the tail extension can be calculated with the following equation:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{te}}=\sum\left(\mathrm{W}_{\mathrm{te} 1}{ }^{*} \mathrm{X}_{\mathrm{te} 1}+\mathrm{W}_{\mathrm{te} 2}{ }^{*} \mathrm{x}_{\mathrm{te} 2}+\cdots \cdots+\mathrm{W}_{\mathrm{ten}}{ }^{*} \mathrm{x}_{\mathrm{ten}}\right) / \sum\left(\mathrm{W}_{\mathrm{te} 1}+\mathrm{W}_{\mathrm{te} 2}+\cdots \cdots+\mathrm{W}_{\mathrm{te}}\right) \\
& \mathrm{y}_{\mathrm{te}}=\sum\left(\mathrm{W}_{\mathrm{te} 1}{ }^{*} \mathrm{y}_{\mathrm{te} 1}+\mathrm{W}_{\mathrm{te} 2}{ }^{*} \mathrm{y}_{\mathrm{te} 2}+\cdots \cdots \cdot+\mathrm{W}_{\mathrm{ten}}{ }^{*} \mathrm{y}_{\mathrm{ten}}\right) / \sum\left(\mathrm{W}_{\mathrm{te} 1}+\mathrm{W}_{\mathrm{te} 2}+\cdots \cdots+\mathrm{W}_{\mathrm{te}}\right)
\end{aligned}
$$

The overall adjusted center of mass of the blocks and tail extension:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{b}+\mathrm{e} \mathrm{e}}=\left(\mathrm{W}_{\mathrm{b}}{ }^{*} \mathrm{x}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}{ }^{*} \mathrm{x}_{\mathrm{te}}\right) /\left(\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}\right) \\
& \mathrm{y}_{\mathrm{b}+\mathrm{te}}=\left(\mathrm{W}_{\mathrm{b}}{ }^{*} \mathrm{y}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}^{*} \mathrm{y}_{\mathrm{te}}\right) /\left(\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}\right)
\end{aligned}
$$

The overall adjusted center of mass of the aggregate and the soil above the tail is:

$$
\begin{aligned}
& x_{\mathrm{a}+\mathrm{s}}=\left(\mathrm{Wa}^{*} x_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}{ }^{*} x_{\mathrm{s}}\right) /\left(\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right) \\
& y_{\mathrm{a}+\mathrm{s}}=\left(\mathrm{W}_{\mathrm{a}}{ }^{*} y_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}{ }^{2} y_{\mathrm{s}}\right) /\left(\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)
\end{aligned}
$$

Project \#		
20004.00	Date	$12 / 5 / 23$

Seismic Loads

Seismic components of force are calculated according to the procedures in FHWA 4.2h.
The maximum acceleration $A_{m}=(1.45-A)^{*} A$ where A is the peak horizontal ground acceleration.

The seismic earth pressure coefficient is calculated with the following equation:

$$
K_{a e}=\frac{\cos ^{2}\left(\phi+\omega^{\prime}-\xi\right)}{\cos (\xi) \cos ^{2}\left(-\omega^{\prime}\right) \cos \left(\delta-\omega^{\prime}+\xi\right)\left[1+\sqrt{\frac{\sin (\phi+\delta) \sin (\phi-\xi-\beta)}{\cos \left(\delta-\omega^{\prime}+\xi\right) \cos \left(\omega^{\prime}+\beta\right)}}\right]^{2}}
$$

where $\xi=\arctan \left[k_{h} /\left(1-k_{v}\right)\right]$

The trial wedge technique is recommended in high seismicity regions to determine the dynamic thrust forces acting on the modular wall.

Seismic Earth load components

k_{v} is generally taken as $0 . k_{h}$ is the maximum horizontal acceleration of the wall, and is a function of the maximum allowable displacement of the wall during a seismic event. It is calculated with the following equation:

$$
\begin{array}{ll}
\mathrm{k}_{\mathrm{h}}=0.74 * \mathrm{~A}_{\mathrm{s}} *\left[\mathrm{~A}_{s} /(\mathrm{d})\right]^{0.25} & \text { (where } \mathrm{d} \text { is in inches) } \\
\mathrm{k}_{\mathrm{h}}=1.66 * \mathrm{~A}_{\mathrm{s}} *\left[\mathrm{~A}_{s} /(\mathrm{d})\right]^{0.25} & \text { (where } \mathrm{d} \text { is in mm) }
\end{array}
$$

d is the maximum horizontal displacement and is typically set at 2 inches (50 mm) as conservative.

$$
A_{s}=P G A * F_{p g a}
$$

k_{h} is generally taken as no greater than $1 / 2$ of A_{s}
The horizontal inertial force P_{ir} is calculated as follows:

$$
\mathrm{P}_{\mathrm{ir}}=\left(\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}+\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)^{*} \mathrm{k}_{\mathrm{h}}
$$

The seismic thrust is calculated as follows:

$$
\begin{aligned}
& \Delta \mathrm{P}_{\mathrm{ae}}=0.5^{*} \gamma^{*} \mathrm{H}^{2} *\left(\mathrm{~K}_{\mathrm{ae}}-\mathrm{K}_{\mathrm{a}}\right) \\
& \Delta \mathrm{P}_{\mathrm{aeh}}=0.5^{*} \gamma^{*} \mathrm{H}^{2} *\left(\mathrm{~K}_{\mathrm{ae}}-\mathrm{K}_{\mathrm{a}}\right)^{*} \cos \left(\delta-\omega^{\prime}\right) \\
& \Delta \mathrm{P}_{\mathrm{aev}}=0.5^{*} \gamma^{*} \mathrm{H}^{2} *\left(\mathrm{~K}_{\mathrm{ae}}-\mathrm{K}_{\mathrm{a}}\right)^{*} \sin \left(\delta-\omega^{\prime}\right)
\end{aligned}
$$

Resultants of Seismic Earth load components

In overturning analysis, the inertial force is applied at the vertical center of gravity of the wall, while the seismic thrust is applied at $1 / 3$ of the wall height.

Project \# 20004.00	Date	

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{Pae}}=\mathrm{H} / 3^{*} \tan \left(\omega^{\prime}\right)+\mathrm{W}_{\mathrm{u}} \\
& \mathrm{y}_{\mathrm{Pae}}=\mathrm{H} / 3 \\
& \mathrm{y}_{\mathrm{Pir}}=\left(\mathrm{W}_{\mathrm{b}}{ }^{*} \mathrm{y}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}{ }^{*} \mathrm{y}_{\mathrm{te}}+\mathrm{W}_{\mathrm{a}}{ }^{*} \mathrm{y}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}{ }^{*} \mathrm{y}_{\mathrm{s}}\right) /\left(\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}+\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)
\end{aligned}
$$

The combined earth pressure P_{ae} is the sum of the static earth pressure P_{a} and the seismic thrust $\Delta \mathrm{P}_{\text {ae }}$. By AASHTO LRFD requirements, two seismic load conditions must be evaluated (AASHTO LRFD 11.6.5.1):

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{ae}} / 2+\mathrm{P}_{\mathrm{ir}}=\mathrm{P}_{\mathrm{a}} / 2+\Delta \mathrm{P}_{\mathrm{ae}} / 2+\mathrm{P}_{\mathrm{ir}} \quad \text { (but not less than } \mathrm{P}_{\mathrm{a}}+\mathrm{P}_{\mathrm{ir}} \text {) } \\
& \mathrm{P}_{\mathrm{ae}}+\mathrm{P}_{\mathrm{i}} / 2=\mathrm{P}_{\mathrm{a}}+\Delta \mathrm{P}_{\mathrm{ae}}+\mathrm{P}_{\mathrm{i} /} / 2
\end{aligned}
$$

Load cases $\mathrm{a} \& \mathrm{~b}$ are separately evaluated to include the alternate combinations above.

Base Friction

Friction across the base of the wall is used to resist sliding failure. Frictional resistance must be determined both between the wall assembly and the base and between the base and the foundation soil (or through the foundation soil).

The unfactored sliding resistance is calculated as the smaller result of the following equations:
For base to foundation soil failure, use:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{s}(f \text { foundation soil) }}=\left(\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}+\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}+\mathrm{P}_{\mathrm{v}}+\mathrm{t}_{\mathrm{b}}{ }^{*} \mathrm{~W}_{\mathrm{b}}{ }^{*} \gamma_{\mathrm{b}}\right) \tan \phi+\mathrm{B}_{\mathrm{w}}{ }^{*} \mathrm{C} \\
& \\
& =\left(\mathrm{F}_{\mathrm{v}}+\mathrm{W}_{\text {base })}{ }^{*} \tan \phi+\mathrm{B}_{\mathrm{w}}{ }^{*} \mathrm{C}\right.
\end{aligned}
$$

where ϕ represents foundation soils, B_{w} is base width (block width plus $1 / 2 \mathrm{H}: 1 \mathrm{~V}$ distribution through base), and c represents foundation soil cohesion.

For block to base material sliding, use:

$$
R_{\mathrm{s}(\text { footing })}=\mu_{\mathrm{b}}\left(\mathrm{~W}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}+\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}+\mathrm{P}_{\mathrm{v}}\right)=\mu_{\mathrm{b}}\left(\mathrm{~F}_{\mathrm{v}}\right)
$$

where μ_{b} represents a composite coefficient of friction for the base

The composite friction coefficient is calculated using contributory areas. The base of a Stone Strong unit consists of a percentage of open void space to be filled with aggregate and a percentage of concrete. These percentages are calculated as follows:
$\%_{\text {void }}=\mathrm{V}_{\text {void }} /\left(\mathrm{V}_{\text {void }}+\mathrm{V}_{\text {concrete }}\right)$
$\%_{\text {concrete }}=\mathrm{V}_{\text {concrete }} /\left(\mathrm{V}_{\text {void }}+\mathrm{V}_{\text {concrete }}\right)$

If a cast-in-place tail extension is used, the area of the tail extension must also be calculated and the total area is also increased accordingly. Thus, the equation for composite friction coefficient across the base becomes:
$\mu_{\mathrm{b}}=\left(\%\right.$ void $^{*} \mathrm{~W}_{\mathrm{u}(\text { bottom })}{ }^{*} \mu_{\mathrm{p}-\text { unit fillbase }}+\%$ concrete $\left.{ }^{*} \mathrm{~W}_{\mathrm{u}(\text { bottom })}{ }^{*} \mu_{\mathrm{p}-\text { block/base }}+\mathrm{W}_{\mathrm{te}}{ }^{*} \mu_{\mathrm{p}-\text { extension/base }}\right) /\left(\mathrm{W}_{\mathrm{u}(\text { bottom })}+\mathrm{W}_{\mathrm{te}}\right)$

Since the unit fill aggregate is typically placed to a moderately loose state, the friction angle for the screened unit fill aggregate typically controls for the interface between the unit fill and the base aggregate.
If actual test data for the project specific materials is not available, or for preliminary design, the following conservative friction angles are suggested for base and infill aggregates: (see AASHTO LRFD Fig. 10.4.6.2.4-1)

	Friction Angle (degrees)		
Crushed Hard Aggregate $>75 \%$ w/ 2 fractured faces, hard natural rock	42	40	36
Crushed Aggregate $>75 \%$ w/ 2 fractured faces, medium natural rock or recycled concrete	40	38	35
Cracked Gravel >90\% w/ 1 fractured face	36	35	32
Note: Physical testing of specific aggregates is recommended. When test data is not available, these typical values may be used at the discretion of the user. The licensed engineer of record is responsible for all design input and for evaluating the reasonableness of calculation output based upon his/her knowledge of local materials and practices and on the specific design details.			

Table of Unfactored Forces \& Moments

	Force (lb) or (kN)	Arm (ft) or (m)	Moment about toe (lb*ft) or (kN *m)
Vertical Forces			
weight of blocks	$\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\text {te }}$	$\mathrm{X}_{\mathrm{b}+\mathrm{te}}$	$\left(W_{b}+W_{t e}\right)^{*} x_{b+t e}$
weight of agg. \& soil over tail	$\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}$	$\mathrm{X}_{\mathrm{a}+\mathrm{s}}$	$\left(W_{a}+W_{s}\right)^{*} x_{\text {a }}$
modified weight of a \& s (80\%)	$0.8 *\left(\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$	$\mathrm{x}_{\mathrm{a}+\mathrm{s}}$	$0.8 *\left(W_{a}+W_{s}\right)^{*}{ }^{\text {a }}$ +s
earth pressure	P_{v}	XPv	$\mathrm{P}_{\mathrm{v}}{ }^{*} \mathrm{P}_{\mathrm{Pv}}$
LL surcharge	$Q_{\text {iv }}$	$\mathrm{X}_{\text {Qv }}$	$\mathrm{Q}_{1 /}{ }^{*} \mathrm{X}_{\mathrm{Q}_{1}}$
Horizontal Forces			
static earth pressure*	Ph_{h}	XPh	$\mathrm{Ph}^{*}{ }^{\text {¢ }}$ Ph
seismic thrust*	$\Delta \mathrm{P}_{\text {aeh }}$	XPaeh	$\Delta \mathrm{Paen}_{\text {a }}{ }^{*} \mathrm{Y}_{\text {Paen }}$
inertial force*	P_{ir}	$\mathrm{XP}_{\text {Pir }}$	$\mathrm{Pir}_{\text {ir }}{ }^{*} \mathrm{y}_{\text {Pir }}$
LL surcharge	$Q_{\text {ln }}$	$\mathrm{X}_{\text {Qh }}$	$\mathrm{Q}_{11}{ }^{*} \mathrm{y}_{\mathrm{Qln}}$

* For seismic load case, separate analysis should be run using a) reduced combined earth pressure (50% of $\mathrm{P}_{\mathrm{h}}+\Delta \mathrm{P}_{\text {aeh }}$, but not less than P_{h}) with the full inertial force ($\mathrm{P}_{\text {ir }}$) and \mathbf{b}) full earth pressure ($\mathrm{P}_{\mathrm{h}}+\Delta \mathrm{P}_{\text {aeh }}$) with reduced inertial force (50% of $\mathrm{P}_{\text {ir }}$).

Table of Load and Resistance Factors for the relevant load cases (based on AASHTO LRFD Tables 3.4.1-1, 3.4.1-2, and 10.5.5.2.2-1)

	Strength $\mathbf{I - a}$	Strength $\mathbf{I - b}$	Strength $\mathbf{I V}$	Extreme $\mathbf{I - a ~ (E Q)}$	Extreme $\mathbf{I - b}(\mathbf{(E)})$	Extreme II (CT)	Service \mathbf{I}
Load Factors	1.75	1.75	0.00	0.00	0.00	0.5	1.00
LL	1.50	1.50	1.50	1.00	1.00	1.00	1.00
EH	0.00	0.00	0.00	1.00	1.00	0.00	0.00
EQ	0.00	0.00	0.00	0.00	0.00	1.00	0.00
CT	0.00	1.75	0.00	0.00	0.00	0.00	1.00
LL Surcharge Over Wall							
Resistance Factors	0.90	1.25	1.50	1.00	1.00	1.00	1.00
DC	1.00	1.35	1.35	1.00	1.00	1.00	1.00
EV	0.45	0.45	0.45	1.00	1.00	1.00	1.00
BC							
ϕ_{τ} precast to agg	0.90	0.90	0.90	1.00	1.00	1.00	1.00
ϕ_{τ} cIP to agg/soil	0.80	0.80	0.80	1.00	1.00	1.00	1.00
ϕ_{τ} soil to soil	0.90	0.90	0.90	1.00	1.00	1.00	1.00
ϕ_{τ} precast to precast	0.90	0.90	0.90	1.00	1.00	1.00	1.00

For each of the load cases, the unfactored vertical and horizontal forces are multiplied by the corresponding load and resistance factors for each.

Table of Calculated Factored Forces and Moments

	Force (lb) or (kN)	Moment (lb*ft) or ($\mathrm{kN}^{*} \mathrm{~m}$)
Vertical Forces		
block weight	$\left(W_{\text {b }}+W_{\text {te }}\right)^{*}$ DC	$\left(W_{b}+W_{\text {te }}\right)^{*} \mathrm{X}_{\mathrm{b}+\mathrm{e}} *$ DC
aggregate \& soil weight	$\left(W_{a}+W_{s}\right)^{*} E V$	$\left(\mathrm{Wa}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)^{*} \mathrm{X}_{\mathrm{a}+\mathrm{s}}{ }^{*} E V$
modified agg \& soil weight	$0.8 *\left(W_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)^{*} E V$	$0.8 *\left(W_{a}+W_{s}\right)^{*} x^{+s}{ }^{*} E V$
earth pressure	$\mathrm{Pv}^{*} \mathrm{EH}$	$\mathrm{P}^{*}{ }^{*} \mathrm{PPV}^{*}$ EH
LL surcharge	Qlv*LL	Q ${ }_{1 v}{ }^{*} \mathrm{X}_{\text {IVv }}{ }^{*} \mathrm{LL}$
seismic thrust*	$\Delta \mathrm{Paev}{ }^{*} \mathrm{EQ}$	$\Delta \mathrm{Paev}{ }^{*} \mathrm{XPa}_{\text {Paen }}{ }^{*} \mathrm{EQ}$
Horizontal Forces		
static earth pressure*	$\mathrm{P}_{\mathrm{h}}{ }^{\text {E }}$ H	
LL surcharge	Ql\| ${ }^{*} \mathrm{LL}$	
seismic thrust*	$\Delta \mathrm{Paen}^{*}{ }^{\text {E }}$ Q	$\Delta \mathrm{Paen}^{*} \mathrm{y}_{\text {Paen }}{ }^{*} \mathrm{EQ}$
inertial force*	$\mathrm{Pir}^{*}{ }^{\text {E }}$ Q	$\mathrm{Pir}^{*}{ }^{*} \mathrm{yPir}^{*}{ }^{*} \mathrm{EQ}$

* For seismic load case, separate analysis should be run using a) reduced combined earth pressure (50% of $P_{h}+\Delta P_{\text {aeh }}$, but not less than P_{h}) with the full inertial force (P_{ir}) and \mathbf{b}) full earth pressure ($\mathrm{P}_{\mathrm{h}}+\Delta \mathrm{P}_{\mathrm{aeh}}$) with reduced inertial force (50% of P_{ir}).

Overturning/Eccentricity

For overturning, the modified weights using 80% of the aggregate weight (including the soil over the tail extension) are used for all overturning calculations.
Although not an explicit requirement of the AASHTO specification, the driving and resisting overturning moments should be compared:

$\mathrm{M}^{\prime} v$	Σ factored moments from vertical forces (using $80 \% \mathrm{~W}_{\mathrm{s}} \& \mathrm{~W}_{\mathrm{a}}$)
M_{H}	Σ factored moments from horizontal forces

For each load case, the factored overturning resistance should be greater than the factored overturning load

Check that M^{\prime} v $>\mathrm{M}_{\mathrm{H}}$

This behavior rarely controls. The AASHTO specification uses eccentricity as a proxy for overturning (but still using 80% of the infill weight).

Project LRFD Design Methodology	Project \# 20004.00	Date $12 / 5 / 23$

Eccentricity should be calculated to check overturning. For an aggregate base, the resultant of the vertical forces must fall within the center $2 / 3$ of the base, so eccentricity must be less than $1 / 3$ times the base width (see AASHTO LRFD 11.6.3.3)

$$
\mathrm{B} / 3=\left(\mathrm{w}_{\mathrm{u}(\text { bottom unit) }}+\mathrm{w}_{\mathrm{te}}\right) / 3
$$

For a concrete base, or a base bearing on rock, the resultant of the vertical forces must fall within the center 90% of the base, so eccentricity must be less than 45% of the base width (see AASHTO LRFD 11.6.3.3).
$\mathrm{B}^{*} 0.45=\left(\mathrm{w}_{\mathrm{u} \text { (bottom unit) }}+\mathrm{w}_{\text {te }}\right)^{*} 0.45$
For the Extreme load cases, the resultant of the vertical forces must fall within the center 80% of the base, so eccentricity must be less than 40% times the base width (see AASHTO LRFD 11.6.5.1)

$$
\mathrm{B}^{*} 0.4=\left(\mathrm{w}_{\mathrm{u}(\text { bottom unit) }}+\mathrm{w}_{\text {te }}\right)^{*} 0.4
$$

(note that for EQ between 0.0 and 1.0, interpolate between $1 / 3$ and 0.4)

Eccentricity or the location of the vertical resultant is calculated as:

F'v	Σ factored vertical forces (using 80\% W W_{s} \& W_{a})
M^{\prime}	Σ factored moments from vertical forces (using 80\% W W_{s} \& W_{a})
M_{H}	Σ factored moments from horizontal forces
e	$\mathrm{e}=\left(\mathrm{w}_{\mathrm{u} \text { (bottom) }}+\mathrm{w}_{\text {te }}\right) / 2+\left(M_{H}-\mathrm{M}^{\prime}{ }^{\prime}\right) / \mathrm{F}^{\prime}{ }_{V}$

For each load case, verify that the eccentricity is less than $1 / 3$ of the base width (or 45% for concrete base, or 40% for Extreme load cases)

Check that $\mathrm{e}<\mathrm{B} / 3$, or $\mathrm{B}^{*} 0.45$, or $\mathrm{B}^{*} 0.40$

Sliding

For each load case, the minimum value for sliding resistance is calculated. A resistance factor of 0.8 is used for a cast in place interface (concrete base or a cast in place tail extension), and a factor of 0.9 is used in all other cases.

F_{H}	Σ factored horizontal forces
F_{V}	Σ factored vertical forces (using $\left.100 \% \mathrm{~W}_{\mathrm{s}} \& \mathrm{~W}_{\mathrm{a}}\right)$
$\mathrm{R}_{\mathrm{s} \text { (footing) }}$	$\mu_{\mathrm{b}} \mathrm{F}_{\mathrm{V}}{ }^{*} \phi_{\tau}$
$\mathrm{R}_{\mathrm{s} \text { (foundation soil) }}$	$\left[\left(\mathrm{F}_{\mathrm{V}}+\mathrm{W}_{\text {base }}{ }^{*} \tan (\phi)+\mathrm{B}_{\mathrm{w}}{ }^{*} \mathrm{c}^{*} \phi_{\tau}\right.\right.$
ϕ_{τ}	0.8 for cast in place base or extension, 0.9 for other cases
$\min \mathrm{R}_{\mathrm{s}}$	smaller of R_{s} (footing) or $\mathrm{R}_{\mathrm{s} \text { (foundation soil) }}$

For each load case, the factored sliding resistance should be greater than the sum of factored horizontal forces

$$
\text { check that } \min R_{s}>F_{H}
$$

Bearing

Load Case Strength I-b generally controls bearing.
B_{f}^{\prime} is the equivalent bearing area. This is the base block width adjusted for eccentricity, and including a $1 / 2 \mathrm{H}: 1 \mathrm{~V}$ distribution through granular base or $1 \mathrm{H}: 1 \mathrm{~V}$ distribution through concrete base.

$$
\begin{aligned}
& B_{f}^{\prime}=w_{u}+w_{t e}+t_{b}-2^{*} e \quad \text { or } \\
& B_{f}^{\prime}=w_{u}+w_{t e}+2^{*} t_{b}-2^{*} e \text { (for concrete base) }
\end{aligned}
$$

Fv	Σ factored vertical forces (using 100\% W $\mathrm{W}_{\text {s }} \mathrm{W}_{\mathrm{a}}$)
surcharge over wall	$\mathrm{qLL}^{*} \mathrm{~W}_{\text {u(top) }}{ }^{*} \mathrm{LL}$
weight of base	$t_{b}{ }^{*} \gamma_{b}{ }^{*} \mathrm{EH}$
M_{v}	Σ factored moments from vertical forces (using 100\% W W_{s} \& W_{a})
M_{H}	Σ factored moments from horizontal forces
e	$\left(w_{u}+w_{\text {te }}\right) / 2-\left(M_{v}-M_{H}\right) / F_{V}$
Bf^{\prime} (granular base)	$\mathrm{w}_{\mathrm{u}}+\mathrm{w}_{\text {te }}+\mathrm{t}_{\mathrm{b}}-2^{*} e$
Bf^{\prime} (concrete base)	$\mathrm{w}_{\mathrm{u}}+\mathrm{w}_{\text {te }}+2^{*} \mathrm{t}_{\mathrm{b}}-2^{*} e$
contact pressure q_{c}	$\left(\mathrm{F}_{\mathrm{V}}+\mathrm{qLL}^{*}{ }^{*} \mathrm{~W}_{\mathrm{u}(\text { top) }}{ }^{*} \mathrm{LL}\right) / \mathrm{B}_{\mathrm{f}}{ }^{\prime}+\mathrm{tb}^{*} \gamma_{\mathrm{b}}{ }^{*} \mathrm{EH}$
bearing resistance q_{b}	$\left[\mathrm{c}^{*} \mathrm{~N}_{\mathrm{c}}{ }^{*} \mathrm{~d}_{\mathrm{c}}{ }^{*} \mathrm{~g}_{\mathrm{c}}+\left(\mathrm{h}_{\mathrm{e}}+\mathrm{t}_{\mathrm{b}}\right)^{*} \gamma_{\text {found }}{ }^{*} \mathrm{~N}_{\mathrm{q}}{ }^{*} \mathrm{~d}_{\mathrm{q}}{ }^{*} \mathrm{~g}_{\mathrm{q}}+0.5{ }^{*} \gamma_{\text {found }}{ }^{*} \mathrm{Bf}^{\prime *} \mathrm{~N}_{\gamma}{ }^{*} \mathrm{~d}_{\gamma}{ }^{*} \mathrm{~g}_{\gamma}\right]^{*} \mathrm{BC}$

Project \#		
20004.00	Date	$12 / 5 / 23$

Note that inclined loading factors are customarily ignored for retaining systems (see AASHTO LRFD C10.6.3.1.2a).

For each load case, the factored bearing resistance should be greater than the factored contact pressure Check that qb > qc

Internal Analysis

Internal stability analysis is conducted for each section above the wall base. Since bearing conditions are addressed in the external stability analysis, only toppling and shear failures are evaluated.

Toppling is evaluated similarly to external overturning analysis, except that the overturning point is set in 1 inch (25 mm) to account for face rounding. Eccentricity for block to block contact should be within the middle 90% of the base as required for a rock foundation.

For each load case:
check that $\mathrm{e}<\mathrm{B}^{*} 0.45$

Shear, or sliding, resistance is calculated based on the interface shear test (see interaction test reports for complete test data)

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{S}}=\left[\mathrm{S}_{\mathrm{i}}+\left(\mathrm{W}+\mathrm{P}_{\mathrm{v}}+\mathrm{Q}_{\mathrm{dv}}\right)^{*} \tan \left(35.2^{\circ}\right)\right]^{*} \varphi_{\mathrm{T}} \\
& \text { where } \varphi_{\mathrm{T}}=0.90 \text { (precast to precast and aggregate to aggregate) } \\
& \quad \mathrm{S}_{\mathrm{i}}=362 \mathrm{lb} / \mathrm{ft} \text { or } 5.28 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

For each load case, the factored sliding resistance must be greater than the factored horizontal force:

$$
\text { check that } R_{s}>F_{H}
$$

At a minimum, internal stability should be evaluated at each change in block width (including any tail extension), at the base of any dual-face units, and for the top course(s) if a surcharge or lateral load is applied.

EXAMPLE GRAVITY WALL CALCULATIONS

LRFD METHOD USING AASHTO LOAD/RESISTANCE FACTORS

Example 1: 12 feet tall wall, vertical face, level back slope, 250 psf traffic surcharge
Retained Soil: sand with $\gamma=120$ pcf and $\phi=30$ degrees
Foundation Soil: \quad clay with $\gamma=125 \mathrm{pcf}, \phi=26$ degrees, and $c^{\prime}=150 \mathrm{psf}$
Infill Aggregate: screened crushed aggregate with $\gamma=110$ pcf and $\phi=35$ degrees
Base Aggregate: well graded crushed aggregate with $\gamma=125 \mathrm{pcf}$ and $\phi=40$ degrees

Project LRFD Example Calculations					$\begin{aligned} & \text { Project \# } 20004.00 \\ & \end{aligned}$			Date $12 / 5$		
Wall Configuration (all weights per foot along length of wall)										
Modular Units			Setback (in)		Concrete (/ft.)		Unit Fill (/ft.)		Soil Wedge (/ft.)	
unit	w (in)	h (ft)	face	tail	W_{b} (lb)	x_{b} (in)	Wa (lb)	xa_{a} (in)	W_{s} (lb)	x_{s} (in)
V6-28	28.0	1.50	0.0	-57.0	238	12.8	183	14.0	110	33.3
V6-44	44.0	1.50	0.0	-41.0	375	21.0	301	23.5	94	48.6
V24-44	43.0	3.00	0.0	-42.0	750	20.2	594	23.8	779	58.3
V24-86	85.0	3.00	0.0	0.0	950	39.0	1,621	44.1	0	0.0
V24-86	85.0	3.00	0.0	0.0	950	39.0	1,621	44.1	0	0.0

External Stability Analysis

Weight and Center of Gravity of Wall Components
$\mathrm{W}_{\mathrm{b}}=950+950+750+375+238=3,263 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\mathrm{a}}=1,621+1,621+594+301+183=4,320 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\mathrm{s}}=779+94+110=983 \mathrm{lb} / \mathrm{ft}$
Total Wall Weight $=3,263+4,320+983=8,490 \mathrm{lb} / \mathrm{ft}$
$\mathrm{x}_{\mathrm{b}}=(950 * 39.0+950 * 39.0+750 * 20.2+375 * 21.0+238 * 12.8) / 3,263=30.7 \mathrm{in}$
$\mathrm{y}_{\mathrm{b}}=(950 * 18+950 * 54+750 * 90+375 * 117+238 * 135) / 3,263=64.9$ in
$x_{a}=\left(1,621^{*} 44.1+1,621^{*} 44.1+594 * 23.8+301^{*} 23.5+183^{*} 14.0\right) / 4,320=38.6$ in
$\mathrm{y}_{\mathrm{a}}=\left(1,621^{*} 18+1,621^{*} 54+594^{*} 90+301^{*} 117+183^{*} 135\right) / 4,320=53.3$ in
$x_{\mathrm{s}}=(779 * 58.3+94 * 48.6+110 * 33.3) / 983=54.5$ in
$y_{\mathrm{s}}=(779 * 89.9+94 * 117.0+110 * 132.0) / 983=97.1$ in
$\mathrm{x}_{\mathrm{a}+\mathrm{s}}=(4,320 * 38.6+983 * 54.5) /(4,320+983)=41.5$ in
$\mathrm{y}_{\mathrm{a}+\mathrm{s}}=(4,320 * 53.3+983 * 97.1) /(4,320+983)=61.4$ in

Earth Pressure Components

$$
\begin{aligned}
& \omega^{\prime}=\arctan (-57 / 12 / 12.0)=-21.6^{\circ} \\
& \delta=0.75^{*} 30=22.5^{\circ} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\cos ^{2}(30+-21.6)}{\cos ^{2}(-21.6) \cos (-21.6-22.5)\left[1+\sqrt{\frac{\sin (30+22.5) \sin (30-0)}{\cos (-21.6-22.5) \cos (-21.6+0)}}\right]^{2}} \\
& K_{a}=0.503 \\
& \mathrm{P}_{\mathrm{h}}=0.5^{*}(0.503)^{*} 120^{*}(12)^{2 *} \cos (22.5+21.6)=3,119 \mathrm{lb} / \mathrm{ft} \\
& P_{\mathrm{v}}=0.5^{*}(0.503)^{*} 120 *(12)^{2 *} \sin (22.5+21.6)=3,022 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{Q}_{\mathrm{lh}}=0.503^{*} 250 * 12^{*} \cos (22.5+21.6)=1,083 \mathrm{lb} / \mathrm{ft} \\
& Q_{\mathrm{lv}}=0.503^{*} 250 * 12 * \sin (22.5+21.6)=1,049 \mathrm{lb} / \mathrm{ft} \\
& x_{P}=(12 / 3)^{*} \tan (-21.6)+85 / 12=5.50 \mathrm{ft} \quad y_{P}=12 / 3=4.00 \mathrm{ft} \\
& \mathrm{X}_{\mathrm{QI}}=(12 / 2)^{*} \tan (-21.6)+85 / 12=4.71 \mathrm{ft} \quad \mathrm{Y}_{\mathrm{QI}}=12 / 2=6.00 \mathrm{ft}
\end{aligned}
$$

Table of Unfactored Forces \& Moments (per foot of wall)

	Unfactored Force (lb)	arm (ft)	Unfactored Moment about toe (lb*ft)
Vertical Forces			
W_{b}	3,263	2.56	8,346
$\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}$	5,304	3.46	18,366
$0.80^{*}\left(\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$	4,243	3.46	14,693
P_{v}	3,022	5.50	16,622
Q_{lv}	1,049	4.71	4,941
$\mathrm{Q}_{\text {lover wall }}$	583	1.17	681
Horizontal Forces			
P_{h}	3,119	4.00	12,477
Q_{lh}	1,083	6.00	6,498

Table of Load \& Resistance Factors

	Strength I-a	Strength I-b	Strength IV	Service I
Load Factors				
LL	1.75	1.75	0.00	1.00
EH	1.50	1.50	1.50	1.00
EQ	0.00	0.00	0.00	0.00
CT	0.00	0.00	0.00	0.00
LL over wall	0.00	1.75	0.00	1.00
Resistance Factors				
DC	0.90	1.25	1.50	1.00
EV	1.00	1.35	1.35	1.00
BC	0.45	0.45	0.45	1.00
ϕ_{τ} precast to agg	0.90	0.90	0.90	1.00
ϕ_{τ} cIP to agg/soil	0.80	0.80	0.80	1.00
ϕ_{τ} soil to soil	0.90	0.90	0.90	1.00
ϕ_{τ} precast to precast	0.90	0.90	0.90	1.00

Project LRFD Example Calculations			$\begin{aligned} & \text { Project \# } 20004.00 \\ & \end{aligned}$		Date $12 / 5 / 23$	
Table of Calculated Factored Forces (lbs per foot of wall)						
	Unfactored Force	Load Factor	Strength I-a	Strength I-b	Strength IV	Service I
Vertical Forces						
W_{b}	3,263	DC	2,936	4,078	4,894	3,263
$\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\text {s }}$	5,304	EV	5,304	7,160	7,160	5,304
0.80* $\left(\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$	4,243	EV	4,243	5,728	5,728	4,243
P_{v}	3,022	EH	4,533	4,533	4,533	3,022
Qiv	1,049	LL	1,836	1,836	0	1,049
Q_{1} over wall	583	LL over	0	1,021	0	583
Horizontal Forces						
P_{h}	3,119	EH	4,679	4,679	4,679	3,119
$Q_{\text {lh }}$	1,083	LL	1,895	1,895	0	1,083

Table of Calculated Factored Moments (lb*ft per foot of wall)

	Unfactored Moment	Load Factor	Strength I-a	Strength I-b	Strength IV	Service I
Vertical Forces						
W_{b}	8,346	DC	7,511	10,433	12,519	8,346
$\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}$	18,366	EV	18,366	24,794	24,794	18,366
$0.80^{*}\left(\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$	14,693	EV	14,693	19,835	19,835	14,693
P_{v}	16,622	EH	24,933	24,933	24,933	16,622
Q_{lv}	4,941	LL	8,646	8,646	0	4,941
$\mathrm{Q}_{\text {loverwall }}$	681	LL over	0	1,191	0	681
Horizontal Forces						
P_{h}	12,477	EH	18,715	18,715	18,715	12,477
Q_{ln}	6,498	LL	11,372	11,372	0	6,498

Project \# 20004.00	Date	$12 / 5 / 23$

Overturning/Eccentricity

Check that M' $>{ }^{\prime} \mathrm{M}_{\mathrm{H}}$
Check that e>B/3 (40\% of B for extreme load cases)
Strength Case l-a:

$$
\begin{aligned}
& M_{v}^{\prime}=7,511+14,693+24,933+8,646=55,784 \mathrm{lb} * \mathrm{ft} / \mathrm{ft} \\
& M_{H}=18,715+11,372=30,087 \mathrm{lb} * \mathrm{ft} / \mathrm{ft} \\
& M_{v}^{\prime}>M_{H} \quad \underline{O K!!} \\
& e=(85 / 12) / 2+(30,087-55,784) /(2,936+4,243+4,533+1,836)=1.65 \mathrm{ft} \\
& B / 3=(85 / 12) / 3=2.36 \mathrm{ft} \\
& e<B / 3 \quad \text { OK!! }
\end{aligned}
$$

Table for all load cases

	Strength I-a	Strength I-b	Strength IV	Service I
$\mathrm{F}^{\prime}{ }_{v}$	13,549	17,196	15,155	12,160
$\mathrm{M}^{\prime}{ }_{v}$	55,784	65,038	57,287	45,282
M_{h}	30,087	30,087	18,715	18,975
e	1.65	1.51	1.00	1.38

All load cases OK!!

Sliding

Check that $\mathrm{R}_{\mathrm{s}}>\mathrm{F}_{\mathrm{h}}$

Strength Case l-a:
Use the smaller sliding resistance, R^{\prime}, across footing or through foundation soil:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{s} \text { (soil) }}^{\prime}=\left[\left(2,936+5,304+4,533+1,836+(85 / 12)^{*}(9 / 12)^{*} 125^{*} 1.0\right)^{*} \tan (26)+\left((85+9) / 12^{*} 150\right)\right]^{*} 0.9 \\
&=7,762 \mathrm{lb} / \mathrm{ft} \\
& \%_{\text {void }}=(1,621 / 110) /(950 / 145+1,621 / 110)=0.6922 \\
& \%_{\text {concrete }}=(950 / 145) /(950 / 145+1,621 / 110)=0.3078 \\
& \mu_{\mathrm{b}}=0.6922^{*} \tan (35)+0.3078^{*} 0.8^{*} \tan (40)=0.69 \\
& R_{\text {s (footing) }}^{\prime}=\left[0.69^{*}(2,936+5,304+4,533+1,836)\right]^{*} 0.9 \\
&=9,090 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{~F}_{\mathrm{h}}=4,679+1,895=6,574 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{R}_{\mathrm{s}}^{\prime}>\mathrm{F}_{\mathrm{h}} \quad \text { OK!! }
\end{aligned}
$$

Project LRFD Example Calculations		$\begin{aligned} & \text { Project \# } 20004.00 \\ & \end{aligned}$		Date $12 / 5 / 2$
Table for all load cases				
	Strength l-a	Strength I-b	Strength IV	Service I
F_{h}	6,574	6,574	4,679	4,202
F_{v}	14,610	18,628	16,587	13,221
F_{v} w/ base weight	15,274	19,525	17,483	13,885
ϕ_{τ}	0.90	0.90	0.90	1.00
R^{\prime} (foundation soil)	7,762	9,628	8,732	7,947
R^{\prime} (footing)	9,090	11,590	10,320	9,140

All Load Cases OK!!

Bearing

Check that $\mathrm{q}_{\mathrm{b}}>\mathrm{q}_{\mathrm{c}}$
Strength Case I-a:

$$
\begin{aligned}
& \mathrm{e}=(85 / 12) / 2-((7,511+18,366+24,933+8,646)-(18,715+11,372)) / \\
& \quad(2,936+5,304+4,533+1,836)=1.53 \\
& \mathrm{~B}_{\mathrm{f}}^{\prime}=(85+9) / 12-2^{*} 1.53 \mathrm{ft}=4.77 \mathrm{ft}
\end{aligned}
$$

Bearing Factors (Vesic):

$\mathrm{N}_{\mathrm{q}}=11.85$	$\mathrm{~N}_{\mathrm{c}}=22.25$	$\mathrm{~N} \gamma=12.54$
$\mathrm{~d}_{\mathrm{c}}=1.13$	$\mathrm{~d}_{\mathrm{q}}=1.10$	$\mathrm{~d}_{\gamma}=1.00$
$\mathrm{~g}_{\mathrm{c}}=1.00$	$\mathrm{~g}_{\mathrm{q}}=1.00$	$\mathrm{~g}_{\gamma}=1.00$

$\mathrm{q}_{\mathrm{b}}=\left[150 * 22.25^{*} 1.13^{*} 1.00+(12+9) / 12^{*} 125^{*} 11.85^{*} 1.10^{*} 1.00+\right.$ $\left.0.5^{*} 125^{*} 4.76 * 12.54\right]^{*} 0.45 * 1.00 * 1.00=4,669 \mathrm{psf}$
weight of base $=\mathrm{t}_{\mathrm{b}}{ }^{*} \gamma_{\text {base }}{ }^{*} \mathrm{EH}=9 / 12 * 125 * 1.5=141 \mathrm{psf}$
$\mathrm{q}_{\mathrm{c}}=(14,610) / 4.77+141=3,203 \mathrm{psf}$
$q_{b}>q_{c} \quad \underline{O K!}!$

All Load Cases OK!!

Project LRFD Example Calculations	Project \# 20004.00	Date $12 / 5 / 23$

Internal Stability

Internal stability should be checked at each change in block width, at all dual-face unit, and at the top unit at a minimum. The following is taken at the first change from $24-86$ to $24-44$. Internal stability of the block stack above this interface is calculated as follows:

Wall Configuration (all weights per foot along length of wall)

Modular Units			Setback (in)		Concrete (/ft.)		Unit Fill (/ft.)		Soil Wedge (/ft.)	
unit	w (in)	h (ft)	face	tail	W_{b} (lb)	x_{b} (in)	Wa (lb)	$\mathrm{xa}_{\mathrm{a}}(\mathrm{in})$	W_{s} (lb)	x_{s} (in)
V6-28	28.0	1.50	0.0	-15.0	238	11.8	183	13.0	110	32.3
V6-44	44.0	1.50	0.0	1.0	375	20.0	301	22.5	0	0.0
V24-44	43.0	3.00	0.0	0.0	750	19.2	594	22.8	0	0.0

Weight and Center of Gravity of Wall Components

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{b}}=750+375+238=1,363 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{~W}_{\mathrm{a}}=594+301+183=1,078 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{~W}_{\mathrm{s}}=110 \mathrm{lb} / \mathrm{ft} \\
& x_{b}=\left(750^{*} 19.2+375^{*} 20.0+238^{*} 11.8\right) / 1,363=18.1 \mathrm{in} \\
& y_{\mathrm{b}}=\left(750^{*} 18+375^{*} 45+238^{*} 63\right) / 1,363=33.3 \mathrm{in} \\
& x_{\mathrm{a}}=\left(594^{*} 22.8+301^{*} 22.5+183^{*} 13.0\right) / 1,078=21.1 \mathrm{in} \\
& y_{a}=\left(594^{*} 18+301^{*} 45+183^{*} 63\right) / 1,078=33.2 \mathrm{in} \\
& x_{\mathrm{s}}=32.3 \mathrm{in} \\
& y_{\mathrm{s}}=110^{*} 60 / 110=60 \mathrm{in} \\
& x_{a+s}=\left(1,078^{*} 21.1+110^{*} 32.3\right) /(1,078+110)=22.1 \mathrm{in} \\
& y_{a+s}=\left(1,078^{*} 33.3+110^{*} 60\right) /(1,078+110)=35.7 \mathrm{in}
\end{aligned}
$$

Earth Pressure Components

$$
\begin{aligned}
& \omega^{\prime}=\arctan (-15 / 12 / 6.0)=-11.77^{\circ} \quad \delta=0.75^{*} 30=22.5^{\circ} \\
& \qquad \mathrm{K}_{\mathrm{a}}=\frac{\cos ^{2}(30+-11.77)}{\cos ^{2}(-11.77) \cos (22.5--11.77)\left[1+\sqrt{\frac{\sin (30+22.5) \sin (30-0)}{\cos (22.5--11.77) \cos (-11.77+0)}}\right]^{2}} \\
& \mathrm{~K}_{\mathrm{a}}=0.394 \\
& \mathrm{P}_{\mathrm{h}}=0.5^{*}(0.394)^{*} 120^{*}(6)^{2 *} \cos (22.5+11.77)=703 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{P}_{\mathrm{v}}=0.5^{*}(0.394)^{*} 120^{*}(6)^{2 *} \sin (22.5+11.77)=479 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{Q}_{\mathrm{lh}}=0.394^{*} 250^{*} 6^{*} \cos (22.5+11.77)=488 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{Q}_{\mathrm{lv}}=0.394^{*} 250^{*} 6^{*} \sin (22.5+11.77)=333 \mathrm{lb} / \mathrm{ft} \\
& \\
& \begin{array}{ll}
\mathrm{X}_{\mathrm{P}}=(6 / 3)^{*} \tan (-11.77)+43 / 12=3.17 \mathrm{ft} & \mathrm{y}_{\mathrm{P}}=6 / 3=2.0 \mathrm{ft} \\
\mathrm{X}_{\mathrm{QI}}=(6 / 2)^{*} \tan (-11.77)+43 / 12=2.96 \mathrm{ft} & \mathrm{YQI}_{\mathrm{QI}}=6 / 2=3.00 \mathrm{ft}
\end{array}
\end{aligned}
$$

Table of Unfactored Forces \& Moments (per foot of wall)

	Unfactored Force (lb)	arm (ft)	Unfactored Moment about toe (lb*ft)
Vertical Forces			
Wb	1,363	1.51	2,058
$\mathrm{Wa}+\mathrm{Ws}$	1,188	1.84	2,188
$0.80^{*}(\mathrm{Wa}+\mathrm{Ws})$	951	1.84	1,750
Pv	479	3.08	1,478
Qlv	333	2.88	957
Ql over wall	583	1.08	632
Horizontal Forces			
Ph	703	2.00	1,407
Qlh	488	3.00	1,465

Table of Load \& Resistance Factors

	Strength I-a	Strength I-b	Strength IV	Service I
Load Factors				
LL	1.75	1.75	0.00	1.00
EH	1.50	1.50	1.50	1.00
EQ	0.00	0.00	0.00	0.00
CT	0.00	0.00	0.00	0.00
LL over wall	0.00	1.75	0.00	1.00
Resistance Factors				
DC	0.90	1.25	1.50	1.00
EV	1.00	1.35	1.35	1.00
$\phi \tau$ precast to precast	0.90	0.90	0.90	1.00

Table of Calculated Factored Forces (lbs per foot of wall)

	Unfactored Force	Load Factor	Strength I-a	Strength I-b	Strength IV	Service I
Vertical Forces						
W_{b}	1,363	DC	1,226	1,703	2,044	1,363
$\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}$	1,188	EV	1,188	1,604	1,604	1,188
$0.80^{*}\left(\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$	951	EV	951	1,283	1,283	951
P_{v}	479	EH	719	719	719	479
Q_{lv}	333	LL	582	582	0	333
$\mathrm{Q}_{\text {loverwall }}$	583	LL over	0	1,021	0	583
Horizontal Forces						
P_{h}	703	EH	1,055	1,055	1,055	703
Q_{lh}	488	LL	855	855	0	488

Table of Calculated Factored Moments (lb*ft per foot of wall)

	Unfactored Moment	Load Factor	Strength I-a	Strength I-b	Strength IV
Vertical Forces					Service I
W_{b}	2,058	DC	1,852	2,572	3,086
$\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}$	2,188	EV	2,188	2,954	2,954
$0.80^{*}\left(\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$	1,750	EV	1,750	2,363	2,363
P_{v}	1,478	EH	2,216	2,216	2,216
Q_{lv}	957	LL	1,674	1,674	0
$\mathrm{Q}_{\text {loverwall }}$	632	LL over	0	1,106	0
Horizontal Forces					
P_{h}	1,407	EH	2,110	2,110	2,110
Q_{ln}	1,465	LL	2,564	2,564	0

Overturning/Topple

Check that $\mathrm{M}^{\prime}>\mathrm{M}_{\mathrm{H}}$
Check that e < B*0.45 (40\% of B for extreme load cases)

Strength Case I-a:
$M_{V}=1,852+1,750+2,216+1,674=7,493 \mathrm{lb}{ }^{*} \mathrm{ft} / \mathrm{ft}$
$\mathrm{M}_{\mathrm{H}}=2,110+2,564=4,674 \mathrm{lb}{ }^{* f t} / \mathrm{ft}$
$M_{V}>M_{H} \quad \underline{O K!!}$
$\mathrm{e}=(42 / 12) / 2+(4,674-7,493) /(1,226+951+719+582)=0.94 \mathrm{ft}$
$B^{*} 0.45=(42 / 12)^{*} 0.45=1.58 \mathrm{ft}$
$\mathrm{e}<\mathrm{B}^{*} 0.45$ OK!!
Table for all load cases

	Strength I-a	Strength I-b	Strength IV	Service I
$\mathrm{F}^{\prime}{ }^{\prime}$	3,478	5,308	4,046	3,708
$\mathrm{M}^{\prime}{ }_{\mathrm{v}}$	7,493	9,932	7,666	6,874
M_{h}	4,674	4,674	2,110	2,872
e	0.94	0.76	0.38	0.67

All Load Cases OK!!

Interface Shear
Check that $\mathrm{R}_{\mathrm{s}}>\mathrm{F}_{\mathrm{h}}$

Strength Case l-a:
$R_{s}^{\prime}=\left[362+(1,226+1,188+719+582)^{*} \tan (35.2)\right]^{*} 0.9=2,685$
$\mathrm{F}_{\mathrm{h}}=1,055+855=1,910 \mathrm{lb} / \mathrm{ft}$
R_{s} > $F_{h} \quad$ OK!!

Table for all load cases

	Strength I-a	Strength I-b	Strength IV	Service I
Fh	1,910	1,910	1,055	1,192
Fv	3,716	5,629	4,367	3,946
$\phi \tau$	0.90	0.90	0.90	1.00
R's	2,685	3,900	3,098	3,146

All Load cases OK!!

External \& Internal Stability OK!!

Project \# 20004.00	Date	12/5/23

Example 2: 12 feet tall wall, battered face, $3 \mathrm{H}: 1 \mathrm{~V}$ back slope, CIP tail extension

Retained Soil: \quad sand with $\gamma=120 \mathrm{pcf}$ and $\phi=30$ degrees
Foundation Soil: \quad clay with $\gamma=125 \mathrm{pcf}, \phi=26$ degrees, and c' $=150 \mathrm{psf}$
Infill Aggregate: \quad screened crushed aggregate with $\gamma=110 \mathrm{pcf}$ and $\phi=35$ degrees
Base Aggregate: well graded crushed aggregate with $\gamma=125$ pcf and $\phi=40$ degrees
Tail Extension: 24 inches wide by 54 inches tall, placed on aggregate base

Project LRFD Example Calculations					$\begin{aligned} & \text { Project \# } 20004.00 \\ & \end{aligned}$			Date $12 / 5 / 23$		
Wall Configuration including CIP tail extension (all weights per foot along length of wall)										
Modular Units			Setback (in)		Concrete (/ft.)		Unit Fill (/ft.)		Soil Wedge (/ft.)	
unit	w (in)	h (ft)	face	tail	W_{b} (lb)	x_{b} (in)	W_{a} (lb)	xa_{a} (in)	W_{s} (lb)	$\mathrm{x}_{\mathrm{s}}(\mathrm{in})$
6-44	44.0	1.50	14.0	-10.0	375	35.0	301	37.5	19	58.9
6-44	44.0	1.50	12.0	-12.0	375	33.0	301	35.5	85	59.2
24-44	44.0	3.00	8.0	-16.0	750	29.2	594	32.8	396	59.3
24-44	68.0	3.00	4.0	4.0	1,185	38.0	594	28.8	311	71.1
24-44	68.0	3.00	0.0	0.0	1,620	39.9	594	24.8	0	0.0

External Stability Analysis

Weight and Center of Gravity of Wall Components

$\mathrm{W}_{\mathrm{b}}+\mathrm{W}_{\mathrm{te}}=\left(750+145^{*} 2.0 * 3.0\right)+(750+145 * 2.0 * 1.5)+750+375+375=4,305 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\mathrm{a}}=594+594+594+301+301=2,385 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\mathrm{s}}=311+396+85+19=811 \mathrm{lb} / \mathrm{ft}$
$\mathrm{x}_{\mathrm{b}+\mathrm{te}}=(1,620 * 39.9+1,185 * 38.0+750 * 29.2+375 * 33.0+375 * 35.0) / 4,305=36.5 \mathrm{in}$
$\mathrm{y}_{\mathrm{b}+\mathrm{te}}=(1,620 * 18+1,185 * 54+750 * 90+375 * 117+375 * 135) / 4,305=59.3$ in
$x_{a}=(594 * 24.8+594 * 28.8+594 * 32.8+301 * 35.5+301 * 37.5) / 2,385=30.7$ in
$y_{\mathrm{a}}=\left(594 * 18+594^{*} 54+594^{*} 90+301^{*} 117+301^{*} 135\right) / 2,385=72.2$ in
$x_{s}=\left(311^{*} 71.1+396 * 59.3+85^{*} 59.2+19^{*} 58.9\right) / 811=63.8$ in
$y_{s}=\left(311 * 60.0+396 * 88.8+85^{*} 116.3+19 * 132\right) / 811=81.7$ in
$\mathrm{x}_{\mathrm{a}+\mathrm{s}}=\left(2,385 * 30.7+811^{*} 63.8\right) /(2,385+811)=39.1$ in
$y_{\text {a+s }}=(2,385 * 72.2+811 * 81.7) /(2,385+811)=74.6$ in

Earth Pressure Components

$$
\omega^{\prime}=\arctan (-10 / 12 / 12.0)=-3.97^{\circ} \quad \delta=0.75^{*} 30=22.5^{\circ}
$$

$K_{a}=0.444$
$P_{h}=0.5^{*}(0.444)^{*} 120^{*}(12)^{2 *} \cos (22.5+3.79)=3,436 \mathrm{lb}$
$P_{v}=0.5^{*}(0.444)^{*} 120^{*}(12)^{2 *} \sin (22.5+3.79)=1,711 \mathrm{lb}$
$\mathrm{x}_{\mathrm{p}}=(12 / 3)^{*} \tan (-3.97)+(68 / 12)=5.39 \mathrm{ft}$
$y_{p}=(12 / 3)=4.00$

Table of Unfactored Forces \& Moments (per foot of wall)

	Unfactored Force (lb)	arm (ft)	Unfactored Moment about toe (lb*ft)
Vertical Forces			
W_{b}	4,305	3.04	13,085
$\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}$	3,196	3.26	10,421
$0.80^{*}\left(\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$	2,557	3.26	8,337
P_{v}	1,711	5.39	9,221
Q_{lv}	0	5.25	0
Q_{l} over wall	0	2.92	0
Horizontal Forces			
P_{h}	3,436	4.00	13,744
Q_{lh}	0	6.00	0

Table of Load \& Resistance Factors

	Strength I-a	Strength I-b	Strength IV	Service I
Load Factors				
LL	1.75	1.75	0.00	1.00
EH	1.50	1.50	1.50	1.00
EQ	0.00	0.00	0.00	0.00
CT	0.00	0.00	0.00	0.00
LL over wall	0.00	1.75	0.00	1.00
Resistance Factors				
DC	0.90	1.25	1.50	1.00
EV	1.00	1.35	1.35	1.00
BC	0.45	0.45	0.45	1.00
ϕ_{τ} precast to agg	0.90	0.90	0.90	1.00
ϕ_{τ} CIP to agg/soil	0.80	0.80	0.80	1.00
ϕ_{τ} soil to soil	0.90	0.90	0.90	1.00
ϕ_{τ} precast to precast	0.90	0.90	0.90	1.00

Table of Calculated Factored Forces (lbs per foot of wall)

	Unfactored Force	Load Factor	Strength I-a	Strength I-b	Strength IV	Service I
Vertical Forces						
W_{b}	4,305	DC	3,875	5,381	6,458	4,305
$\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}$	3,196	EV	3,196	4,314	4,314	3,196
$0.80^{*}\left(\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$	2,557	EV	2,557	3,452	3,452	2,557
P_{v}	1,711	EH	2,567	2,567	2,567	1,711
Q_{lv}	0	LL	0	0	0	0
$\mathrm{Q}_{\text {overwall }}$	0	LL over	0	0	0	0
Horizontal Forces						
P_{h}	3,436	EH	5,154	5,154	5,154	3,436
Q_{lh}	0	LL	0	0	0	0

Table of Calculated Factored Moments (lb*ft per foot of wall)

	Unfactored Moment	Load Factor	Strength I-a	Strength I-b	Strength IV	Service I
Vertical Forces						
W_{b}	13,085	DC	11,777	16,356	19,628	13,085
$\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}$	10,421	EV	10,421	14,069	14,069	10,421
$0.80 *\left(\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$	8,337	EV	8,337	11,255	11,255	8,337
P_{v}	9,221	EH	13,831	13,831	13,831	9,221
Q_{lv}	0	LL	0	0	0	0
$\mathrm{Q}_{\text {loverwall }}$	0	LL over	0	0	0	0
Horizontal Forces						
P_{h}	13,744	EH	20,615	20,615	20,615	13,744
Q_{lh}	0	LL	0	0	0	0

Project \# 20004.00	Date	$12 / 5 / 23$

Overturning/Eccentricity

Check that M'v $>\mathrm{M}_{\mathrm{H}}$
Check that e>B/3 (40\% of B for extreme load cases)

Strength Case l-a:

$$
\begin{aligned}
& M_{V}^{\prime}=11,777+8,337+13,831=33,944 \mathrm{lb} * \mathrm{ft} / \mathrm{ft} \\
& M_{H}=20,615 \mathrm{lb} * \mathrm{ft} / \mathrm{ft} \\
& M_{V}^{\prime}>M_{H} \quad \underline{O K!!} \\
& e=(68 / 12) / 2+(20,615-33,944) /(3,875+2,557+2,567)=1.35 \mathrm{ft} \\
& B / 3=(68 / 12) / 3=1.89 \mathrm{ft} \\
& e<B / 3 \quad \underline{O K!!}
\end{aligned}
$$

Table for all load cases

	Strength I-a	Strength I-b	Strength IV	Service I
$\mathrm{F}^{\prime}{ }_{v}$	8,998	11,399	12,476	8,573
$\mathrm{M}^{\prime}{ }_{\mathrm{v}}$	33,944	41,442	44,713	30,643
M_{h}	20,615	20,615	20,615	13,744
e	1.35	1.01	0.90	0.86

All load cases $\underline{\text { OK!!! }}$

Sliding

Check that $\mathrm{R}_{\mathrm{s}}>\mathrm{F}_{\mathrm{h}}$

Strength Case I-a:
Use the smaller sliding resistance, R^{\prime}, across footing or through foundation soil:

$$
\begin{aligned}
\mathrm{R}_{\mathrm{s}(\text { soil })}^{\prime} & =\left[\left(3,875+3,196+2,567+(68 / 12)^{*}(9 / 12)^{*} 110^{* 1} 1.0\right)^{*} \tan (26)^{*}((68+9) / 12)^{*} 150\right]^{*} 0.9 \\
& =5,330 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

Tail extension is assumed to be on aggregate base
$\%$ void $=(594 / 110) /(594 / 110+750 / 145+24 / 12 * 3)=0.2281$
$\%_{\text {precast }}=(750 / 145) /(594 / 110+750 / 145+24 / 12 * 3)=0.2095$
$\%_{\text {CIP }}=\left(24 / 12^{*} 3\right) /(594 / 110+750 / 145+24 / 12 * 3)=0.3038$
$\mu_{\mathrm{b}}=\left(0.2281^{*} \tan (35)+0.2095^{*} 0.8^{*} \tan (40)+0.3038^{*} \tan (40)\right)=0.74$
$\mathrm{R}_{\mathrm{s} \text { (footing) }}=0.9^{*} 0.74^{*}(3,875+3,196+2,567)$
$=6,419 \mathrm{lb} / \mathrm{ft}$
$\mathrm{F}_{\mathrm{h}}=5,154 \mathrm{lb} / \mathrm{ft}$
$R_{s}>F_{h} \quad \underline{O K!}!$

Project LRFD Example Calculations		$\begin{aligned} & \text { Project \# } 20004.00 \\ & \end{aligned}$		Date $12 / 5 / 2$
Table for all load cases				
	Strength l-a	Strength l-b	Strength IV	Service I
F_{h}	5,154	5,154	5,154	3,436
F_{v}	9,637	12,262	13,339	9,212
F_{v} w/ base weight	10,168	12,979	14,056	9,743
ϕ_{τ}	0.90	0.90	0.90	1.00
R^{\prime} (foundation soil)	5,330	6,564	7,036	5,715
R^{\prime} (footing)	6,419	8,167	8,884	6,817

All Load Cases OK!!

Bearing

Check that $q_{b}>q_{c}$

Strength Case I-a:

$$
\begin{aligned}
& \mathrm{e}=((68 / 12) / 2+(20,615-11,777+10,421+13,831) /(3,875+3,196+2,567)=1.23 \\
& \mathrm{Bf}_{\mathrm{f}}^{\prime}=(68+9) / 12-2^{*} 1.23 \mathrm{ft}=3.95 \mathrm{ft}
\end{aligned}
$$

Bearing Factors (Vesic):

$$
\begin{array}{lll}
\mathrm{N}_{\mathrm{q}}=11.85 & \mathrm{~N}_{\mathrm{c}}=22.25 & \mathrm{~N}_{\gamma}=12.54 \\
\mathrm{~d}_{\mathrm{c}}=1.14 & \mathrm{~d}_{\mathrm{q}}=1.11 & \mathrm{~d}_{\mathrm{\gamma}}=1.00 \\
\mathrm{~g}_{\mathrm{c}}=1.00 & \mathrm{~g}_{\mathrm{q}}=1.00 & \mathrm{~g}_{\mathrm{\gamma}}=1.00
\end{array}
$$

$$
\mathrm{q}_{\mathrm{b}}=\left[150 * 22.25^{*} 1.14 * 1.00+(12+9) / 12^{*} 125^{*} 11.85 * 1.11^{*} 1.00+\right.
$$

$$
0.5 * 125 * 3.96 * 12.54] * 0.45 * 1.10 * 1.00=4,406 \mathrm{psf}
$$

$$
\begin{aligned}
& \text { weight of base }=\mathrm{t}_{\mathrm{b}}{ }^{*} \gamma_{\text {base }}{ }^{*} \mathrm{EH}=9 / 12^{*} 125^{*} 1.5=141 \mathrm{psf} \\
& \mathrm{q}_{\mathrm{c}}=(9,637) / 3.95+141=2,581 \mathrm{psf} \\
& \mathrm{q}_{\mathrm{b}}>\mathrm{q}_{\mathrm{c}} \quad \underline{\text { OK!! }}
\end{aligned}
$$

SYSTEMS ${ }^{\circ}$

Project LRFD Example Calculations	Project \# 20004.00	Date $12 / 5 / 23$

Table for all load cases

	Strength I-a	Strength I-b	Strength IV	Service I
Fv	9,637	12,262	13,339	9,212
Mv	36,029	44,256	47,527	32,727
Mh	20,615	20,615	20,615	13,744
e	1.23	0.91	0.82	0.77
Bf	3.95	4.61	4.79	4.87
qc	2,581	2,803	2,928	1,985
qb	4,406	4,638	4,701	10,515

All Load Cases OK!!!

Project LRFD Example Calculations					Project \# 20004.00				Date
Internal Stability									
Internal stability should be checked at each change in block width, at all dual-face u at a minimum. The following is taken at the first change from 24-44 with tail extensi unit. Internal stability of the block stack above this interface is calculated as follows:									
Wall Configuration (all weights per foot along length of wall)									
Modular Units			Setback (in)		Concrete (/ft.)		Unit Fill (/ft.)		
unit	w (in)	h (ft)	face	tail	W_{b} (lb)	x_{b} (in)	W_{a} (lb)	xa_{a} (in)	
6-44	44.0	1.50	6.0	6.0	375	26.0	301	28.5	
6-44	44.0	1.50	4.0	4.0	375	24.0	301	26.5	
24-44	44.0	3.00	0.0	0.0	750	20.2	594	23.8	

Weight and Center of Gravity of Wall Components

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{b}}=750+375+375=1,500 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{~W}_{\mathrm{a}}=594+301+301=1,196 \mathrm{lb} / \mathrm{ft} \\
& x_{b}=\left(750^{*} 20.2+375^{*} 24.0+375^{*} 26.0\right) / 1,500=22.6 \mathrm{in} \\
& y_{\mathrm{b}}=\left(750^{*} 18+375^{*} 45+375^{*} 63\right) / 1,500=36.0 \mathrm{in} \\
& x_{\mathrm{a}}=\left(594^{*} 23.8+301^{*} 26.5+301^{*} 28.5\right) / 1,196=25.7 \mathrm{in} \\
& y_{\mathrm{a}}=\left(594^{*} 18+301^{*} 45+301^{*} 63\right) / 1,196=36.1 \mathrm{in}
\end{aligned}
$$

Earth Pressure Components

$\omega^{\prime}=6.34^{\circ} \quad \delta=0.5^{*} 30=15.0^{\circ}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\cos ^{2}(30+6.34)}{\cos ^{2}(6.34) \cos (6.34-15.0)\left[1+\sqrt{\frac{\sin (30+15.0) \sin (30-18.4)}{\cos (6.34-15.0) \cos (6.34+18.4)}}\right]^{2}}
$$

$K_{\mathrm{a}}=0.340$
$\mathrm{P}_{\mathrm{h}}=0.5^{*}(0.340)^{*} 120^{*}(6)^{2 *} \cos (15-6.34)=727 \mathrm{lb}$
$P_{v}=0.5^{*}(0.340) * 120^{*}(6)^{2 *} \sin (15-6.34)=111 \mathrm{lb}$
$X_{P}=(6 / 3)^{*} \tan (6.34)+(43 / 12)=3.81 \mathrm{ft}$
$y_{P}=6 / 3=2.00 \mathrm{ft}$

Table of Unfactored Forces \& Moments (per foot of wall)

	Unfactored Force (lb)	arm (ft)	Unfactored Moment about toe (lb*ft)
Vertical Forces			
W_{b}	1,500	1.88	2,825
$\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}$	1,196	2.14	2,559
$0.80^{*}\left(\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$	957	2.14	2,047
P_{v}	111	3.81	421
Q_{lv}	0	3.92	0
Q_{l} over wall	0	2.92	0
Horizontal Forces			
P_{h}	727	2.00	1,453
Q_{lh}	0	3.00	0

Table of Load \& Resistance Factors

	Strength I-a	Strength I-b	Strength IV	Service I
Load Factors				
LL	1.75	1.75	0.00	1.00
EH	1.50	1.50	1.50	1.00
EQ	0.00	0.00	0.00	0.00
CT	0.00	0.00	0.00	0.00
LL over wall	0.00	1.75	0.00	1.00
Resistance Factors				
DC	0.90	1.25	1.50	1.00
EV	1.00	1.35	1.35	1.00
ϕ_{τ} precast to precast	0.90	0.90	0.90	1.00

Table of Calculated Factored Forces (lbs per foot of wall)

	Unfactored Force	Load Factor	Strength I-a	Strength I-b	Strength IV	Service I
Vertical Forces						
W_{b}	1,500	DC	1,350	1,875	2,250	1,500
$\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}$	1,196	EV	1,196	1,615	1,615	1,196
$0.80^{*}\left(\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$	957	EV	957	1,292	1,292	957
P_{v}	111	EH	166	166	166	111
Q_{lv}	0	LL	0	0	0	0
$\mathrm{Q}_{\text {loverwall }}$	0	LL over	0	0	0	0
Horizontal Forces						
P_{h}	727	EH	1,090	1,090	1,090	727
Q_{lh}	0	LL	0	0	0	0

Table of Calculated Factored Moments (lb*ft per foot of wall)

	Unfactored Moment	Load Factor	Strength I-a	Strength I-b	Strength IV	Service I
Vertical Forces						
W_{b}	2,825	DC	2,543	3,531	4,238	2,825
$\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}$	2,559	EV	2,559	3,454	3,454	2,559
$0.80^{*}\left(\mathrm{~W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{s}}\right)$	2,047	EV	2,047	2,763	2,763	2,047
P_{v}	421	EH	632	632	632	421
Q_{lv}	0	LL	0	0	0	0
$\mathrm{Q}_{\text {lover wall }}$	0	LL over	0	0	0	0
Horizontal Forces						
P_{h}	1,453	EH	2,180	2,180	2,180	1,453
Q_{ln}	0	LL	0	0	0	0

Overturning/Topple

Check that M'V $>\mathrm{M}_{\mathrm{H}}$
Check that e<B*0.45 (40\% of B for extreme load cases)

Strength Case I-a:
$M^{\prime} v=2,543+2,047+642=5,221 \mathrm{lb} * f t / f t$
$M_{H}=2,180 \mathrm{lb}$ fft $/ \mathrm{ft}$
$M_{V}>M_{H} \quad \underline{O K!}!$
$\mathrm{e}=(43) / 12 / 2+(2,180-5,221) /(1,350+957+166)=0.56 \mathrm{ft}$
$B^{*} 0.45=(43 / 12)^{*} 0.45=1.61 \mathrm{ft}$
$e<B^{*} 0.45$ OK!!
Table for all load cases

	Strength I-a	Strength I-b	Strength IV	Service I
$\mathrm{F}^{\prime} \stackrel{2,473}{ }$	3,333	3,708	2,568	
$\mathrm{M}^{\prime}{ }_{\mathrm{v}}$	5,221	6,926	7,632	5,293
M_{h}	2,180	2,180	2,180	1,453
e	0.56	0.37	0.32	0.30

All Load Cases OK!!

Interface Shear
Check that R^{\prime} > F_{h}

Strength Case I-a:

$$
\begin{aligned}
& R_{s}^{\prime}=\left[362+(1,350+1,196+166)^{*} \tan (35.2)\right]^{*} 0.9=2,048 \\
& F_{h}=1,090 \mathrm{lb} / \mathrm{ft} \\
& R_{s}^{\prime}>F_{h} \quad \underline{O K!!}
\end{aligned}
$$

Table for all load cases

	Strength I-a	Strength I-b	Strength IV	Service I
F_{h}	1,090	1,090	1,090	727
$\mathrm{~F}_{\mathrm{v}}$	2,712	3,656	4,031	2,807
ϕ_{τ}	0.90	0.90	0.90	1.00
$\mathrm{R}^{\prime}{ }_{\mathrm{s}}$	2,048	2,647	2,885	2,342

All Load cases OK!!

External \& Internal Stability OK!!

STRロNG
SYSTEMS*
Section: Example \#1, level grade w/ surcharge
Calc by: D Thiele

Notes 12.0 tall wall, 12 inches of embedment, 9 inch thick base, no tail extension, level back slope,highway surcharge 250 psf, vertical face, 30 degree sand retained

External stability

Wall Con	uration		setback (in)		modular units		unit fill		soil wedge		CIP Extension		Internal	Max Utiliization
unit	w (in)	$\mathrm{h}(\mathrm{ft})$	face	tail	Wb (lb)	xb (in)	Wa (lb)	xa (in)	Ws (lb)	xs (in)	we (in)	h_{t}		
	28.0	1.50	0.0	-57.0	238	12.8	183	14.0					Internal Stability OK!	40\%
V6-28														
V6-44	44.0	1.50	0.0	-41.0	375	21.0	301	23.5	94	48.6			Internal Stability OK!Internal Stability OK!	50\%
V24-44	$\begin{aligned} & 43.0 \\ & 85.0 \end{aligned}$	3.00	0.0	-42.0	750	20.2			779	58.3				71\%
V24-86		3.00	0.0	0.0	950	39.0	$\begin{aligned} & 1,621 \\ & 1,621 \end{aligned}$	44.1 44.1	0	0.0			Internal Stability OK!	59\%
V24-86	85.0	3.00	0.0	0.0	950	39.0			0	0.0				
													External Stability OK!	85\%
	85.0	12.00	0.0	-57.0	3,263	30.7	4,320	38.6	983	54.5				
back	height	12.00 feet		$\begin{array}{r} \omega= \\ \omega^{\prime}= \end{array}$	0.00 deg		interface friction angle $\delta \quad 22.5 \mathrm{deg}$	interface friction angle						
expos	height	11.00 feet			-21.60 deg			δ	22.5 deg					

Retained Soil

γ	$\mathbf{1 2 0}$
$\phi \quad \mathrm{pcf}$	
$\mathbf{3 0}$	deg

Foundation Soil

γ	$\mathbf{1 2 5}$	pcf
ϕ	$\mathbf{2 6}$	deg
c^{\prime}	$\mathbf{1 5 0}$	psf

factored bearing resistance $\quad \mathrm{n} / \mathrm{a} \mathrm{psf}$ (if specified)
(net)

base embedment	12
base thickness	9
base material	agg
toe slope	

H:1V slope

STロNE

STRDNG
SYSTEMS*

Job\#: 20004.00
Section: Example \#1, level grade w/ surcharge
Calc by: D Thiele
\square

Backfill Slope \& Surcharge

30		fe
length 2		feet
length 3		feet (horizontal)
length 4		feet (horizontal)
effecti failure		$\begin{array}{r} \mathrm{H}: 1 \mathrm{~V} \\ 62.06 \mathrm{deg} \end{array}$

zone of influence $\quad 13.45 \mathrm{ft}$

0.0 deg

Ground Surface \& Trial Wedge Plot

Unfactored Loads

K_{a}	$=0.503 \mathrm{l}$
P_{h}	$=3,119 \mathrm{lb}$
P_{v}	$=3,022 \mathrm{lb}$
Q_{lh}	$=1,083 \mathrm{lb}$
Q_{lv}	$=1,049 \mathrm{lb}$

$\mathrm{K}_{\mathrm{AE}}=$	0.503
$\Delta \mathrm{~K}_{\mathrm{AE}}=$	0.000
$\mathrm{P}_{\mathrm{IR}}=$	0 lb
$\Delta \mathrm{P}_{\mathrm{AEh}}=$	0 lb
$\Delta \mathrm{P}_{\mathrm{AEV}}=$	0 lb

avg q 250 psf
lb

$$
\mathrm{Q}_{\mathrm{lv}}=1,049 \mathrm{lb}
$$

0 lb

STRロNG
SYSTEMS*

```
Location: Example Calculations
    Job#: 20004.00
    Section: Example #1, level grade w/ surcharge
    Calc by:D Thiele
```

Page 3 of 3 12/5/23 15:37

Load \&
Resistance Factors
LL Surcharge over Wall DC
EV
BC
ϕt precast to agg ϕ CIP to agg/soil
ϕt soil to soil ϕt precast to precast
concrete interface - eccentricity limit bearing on soil - eccentricity limit

| I-a | I-b | IV | I-a (EQ) | I-b (EQ) | II (CT) | I | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 30,087 | 30,087 | 18,715 | 12,477 | 12,477 | 15,726 | 18,975 | OK! |
| 6,574 | 6,574 | 4,679 | 3,119 | 3,119 | 3,661 | 4,202 | OK! |
| 3,203 | 3,841 | 2,906 | 2,001 | 2,001 | 2,213 | 2,595 | OK! |
| 1.65 | 1.51 | 1.00 | 0.96 | 0.96 | 1.15 | 1.38 | OK! |
| 4.77 | 5.03 | 6.00 | 6.08 | 6.08 | 5.72 | 5.29 | |
| | | | | | | | |
| 55,784 | 65,038 | 57,287 | 39,661 | 39,661 | 42,131 | 45,282 | |
| 7,762 | 9,628 | 8,732 | 7,151 | 7,151 | 7,407 | 7,947 | |
| 4,669 | 4,762 | 5,102 | 11,399 | 11,399 | 11,117 | 10,780 | |
| 2.36 | 2.36 | 2.36 | 2.83 | 2.83 | 2.83 | 2.36 | |

STRロNG
SYSTEMS*

Section: Example \#1, level grade w/ surcharge
Calc by: D Thiele
(AASHTO 9th Edition, 2020)
Notes 12.0 tall wall, 12 inches of embedment, 9 inch thick base, no tail extension, level back slope, highway surcharge 250 psf, vertical face, 30 degree sand retained

Internal stability (top 6 feet)

Wall Con	uration		setback (in)		modular units		unit fill		soil wedge		CIP Extension		Internal	Max Utiliization
unit	w (in)	h (ft)	face	tail	Wb (lb)	xb (in)	Wa (lb)	xa (in)	Ws (lb)	xs (in)	we (in)	h_{t}		
	28.0	1.50	0.0	$\begin{gathered} -15.0 \\ 1.0 \end{gathered}$	$\begin{aligned} & 238 \\ & 375 \\ & 750 \end{aligned}$	$\begin{aligned} & 11.8 \\ & 20.0 \\ & 19.2 \end{aligned}$	$\begin{aligned} & 183 \\ & 301 \\ & 594 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 22.5 \\ & 22.8 \end{aligned}$	$\begin{gathered} 110 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 32.3 \\ 0.0 \\ 0.0 \end{gathered}$			Internal Stability OK! Internal Stability OK!	$\begin{aligned} & 40 \% \\ & 50 \% \end{aligned}$
V6-28														
V6-44	44.043.0	1.50	0.0											
V24-44		3.00	0.0	0.0										
													Internal Stability OK!	71\%
43.0		6.00	0.0	-15.0	1,363	18.1	1,078	21.1	110	32.3				
backfill height		6.00	feet	$\omega=$	0.00 deg			interface friction angle						
		$\omega^{\prime}=$		-11.77										

Retained Soil

Internal ONLY

Aggregate Unit Fill 110 pcf

STロNE
STRDNG
SYSTEMS*

Job\#: 20004.00
Section: Example \#1, level grade w/ surcharge
Calc by: D Thiele

\qquad site class (A to E or 1) \square D $\begin{array}{llll}\text { Fpga } & 1.60 \quad \text { Fa } & 1.60\end{array}$

Backfill Slope \& Surcharge

length 1	30	feet (horizon
length 2		feet (horizontal)
length 3		feet (horizontal)
length 4		feet (horizontal)
effectiv		$\mathrm{H}: 1 \mathrm{~V}$
failure		59.43 deg

tier height

zone of influence $\quad 7.13 \mathrm{ft}$

Ground Surface \& Trial Wedge Plot

Unfactored Loads

$\mathrm{K}_{\mathrm{a}}=$	0.394
$\mathrm{P}_{\mathrm{h}}=$	703 lb
$\mathrm{P}_{\mathrm{v}}=$	479 lb
$\mathrm{Q}_{\mathrm{lh}}=$	488 lb
$\mathrm{Q}_{\mathrm{lv}}=$	333 lb

$\mathrm{K}_{\mathrm{AE}}=$	0.394
$\Delta \mathrm{~K}_{\mathrm{AE}}=$	0.000
$\mathrm{P}_{\mathrm{IR}}=$	0 lb
$\Delta \mathrm{P}_{\mathrm{AEh}}=$	0 lb
$\Delta \mathrm{P}_{\mathrm{AEv}}=$	0 lb

STRロNG
SYSTEMS*


```
Project Name:LRFD Methodology
Location: Example Calculations
    Job#: 20004.00
    Section: Example #2, 3H:1V backslope
    Calc by: D Thiele
```

Notes 12.0 tall wall, 12 inches of embedment, 9 inch thick base, $3 \mathrm{H}: 1 \mathrm{~V}$ backslope,

$$
\text { battered face, } 30 \text { degree sand retained, CIP tail extension on lower } 4.5 \text { feet }
$$

External stability

Retained Soil

Foundation Soil

γ	125
ϕ	26
c'	150

base embedment	12	in
base thickness	9	
base material	agg	
toe slope		H:1V slope

Aggregate Unit Fill
110 pcf
factored bearing resistance n/a psf
(net)
composite friction coefficient
$\mu_{\mathrm{b}} 0.74$

STロNE

STRDNG
SYSTEMS ${ }^{\circ}$
Section: Example \#2, 3H:1V backslope
Calc by: D Thiele
$\mathrm{PGA} \square \mathrm{G}$
site class（A to E or 1） \square

Backfill Slope \＆Surcharge

length 1	30	feet（horiz
length 2		feet（horizontal）
length 3		feet（horizontal）
length 4		feet（horizontal）
effecti		$3.00 \mathrm{H}: 1 \mathrm{~V}$ slo
failure		49.71 deg

avg q

0 psf
zone of influence $\quad 20.18 \mathrm{ft}$
Ground Surface \＆Trial Wedge Plot

Unfactored Loads

3000	$\mathrm{K}_{\mathrm{a}}=$	0.444
〇	$\mathrm{P}_{\mathrm{h}}=$	3，436 lb
2500 苞	$\mathrm{P}_{\mathrm{v}}=$	1，711 lb
2000 馬	$\mathrm{Q}_{\mathrm{lh}}=$	0 lb
2000 ¢	$\mathrm{Q}_{1 \mathrm{l}}=$	0 lb

$\mathrm{K}_{\mathrm{AE}}=$	0.444
$\Delta \mathrm{~K}_{\mathrm{AE}}=$	0.000
$\mathrm{P}_{\mathrm{IR}}=$	0 lb
$\Delta \mathrm{P}_{\mathrm{AEh}}=$	0 lb
$\Delta \mathrm{P}_{\mathrm{AEv}}=$	0 lb

STRロNG
SYSTEMS*
Job\#: 20004.00
Section: Example \#2, 3H:1V backslope
Calc by: D Thiele

Page 3 of 3 12/5/23 15:37

Load \&
Resistance Factors
LL Surcharge over Wall DC
EV
BC
ϕt precast to agg ϕ CIP to agg/soil
ϕt soil to soil ϕt precast to precast
concrete interface - eccentricity limit bearing on soil - eccentricity limit
Strngth Strngth Extrme Extrme Extrme Service

STRロNG
SYSTEMS*

Section: Example \#2, 3H:1V backslope
Calc by: D Thiele
(AASHTO 9th Edition, 2020)
Notes 12.0 tall wall, 12 inches of embedment, 9 inch thick base, $3 \mathrm{H}: 1 \mathrm{~V}$ backslope,
battered face, 30 degree sand retained, CIP tail extension on lower 4.5 feet
Internal stability (top 6 feet)

Wall Con	uration		setback (in)		modular units		unit fill		soil wedge		CIP Extension		Internal	Max Utiliization
unit	w (in)	h (ft)	face	tail	Wb (lb)	xb (in)	Wa (lb)	xa (in)	Ws (lb)	xs (in)	we (in)	h_{t}		
	44.0	1.50	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 375 \\ & 375 \\ & 750 \end{aligned}$	$\begin{aligned} & 26.0 \\ & 24.0 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 301 \\ & 301 \\ & 594 \end{aligned}$	$\begin{aligned} & 28.5 \\ & 26.5 \\ & 23.8 \end{aligned}$					Internal Stability OK! Internal Stability OK!	$\begin{aligned} & 11 \% \\ & 23 \% \end{aligned}$
6-44														
6-44	44.044.0	1.503.00												
24-44			0.0	0.0										
													Internal Stability OK!	53\%
44.0backfill height		6.00	6.0	6.0	1,500	22.6	1,196	25.7	0	0.0				
		6.00 feet		$\omega=$$\omega^{\prime}=$	6.34 deg		interface friction angle							
		6.34 deg	$\delta \quad 15.0$ deg											

Retained Soil

Internal ONLY

Aggregate Unit Fill 110 pcf

STロNE
STRDNG
SYSTEMS*

Job\#: 20004.00
Section: Example \#2, 3H:1V backslope
Calc by: D Thiele
Backfill Slope \& Surcharge

length 1	30	
length 2		
length 3		feet (horizontal)
length 4		feet (horizontal)
effecti		$3.00 \mathrm{H}: 1 \mathrm{~V}$ slope
failure	e α	48.61 deg

avg q

0 psf
zone of influence $\quad 10.88 \mathrm{ft}$

Ground Surface \& Trial Wedge Plot

Unfactored Loads

$\mathrm{K}_{\mathrm{a}}=$	0.340
$\mathrm{P}_{\mathrm{h}}=$	727 lb
$\mathrm{P}_{\mathrm{v}}=$	111 lb
$\mathrm{Q}_{\mathrm{lh}}=$	0 lb
$\mathrm{Q}_{\mathrm{k}}=$	0 lb

$\mathrm{K}_{\mathrm{AE}}=$	0.340
$\Delta \mathrm{~K}_{\mathrm{AE}}=$	0.000
$\mathrm{P}_{\mathrm{IR}}=$	0 lb
$\Delta \mathrm{P}_{\mathrm{AEh}}=$	0 lb
$\Delta \mathrm{P}_{\mathrm{AEV}}=$	0 lb

STRロNG
SYSTEMS*

Load Cases:	Strngth I-a	Strngth I-b	Strngth IV	Extrme I-a (EQ)	Extrme I-b (EQ)	Extrme II (CT)	Service I		12/5/23 15:37
Factored Overturning (lb-ft):	2,180	2,180	2,180	1,453	1,453	1,453	1,453	OK!	Max Utiliization
Loading Sliding (lb):	1,090	1,090	1,090	727	727	727	727	OK!	53\%
Bearing (psf):								OK!	
$e(f t):$	0.56	0.37	0.32	0.30	0.30	0.30	0.30	OK!	
$B f^{\prime}(f):$									
Factored \quad Overturning (lb-ft):	5,221	6,926	7,632	5,293	5,293	5,293	5,293		Min Capacity/Demand Ratio
Resistance \quad Sliding (lb):	2,048	2,647	2,885	2,342	2,342	2,342	2,342		1.88
Bearing (psf):									
(@ interface) Max e (ft):	1.61	1.61	1.61	1.43	1.43	1.61	1.61		
Load \& LL	1.75	1.75	0.00	0.00	0.00	0.50	1.00		
Resistance Factors EH	1.50	1.50	1.50	1.00	1.00	1.00	1.00		
EQ	0.00	0.00	0.00	1.00	1.00	0.00	0.00		
CT	0.00	0.00	0.00	0.00	0.00	1.00	0.00		
LL Surcharge over Wall	0.00	1.75	0.00	0.00	0.00	0.00	1.00		
DC	0.90	1.25	1.50	1.00	1.00	1.00	1.00		
EV	1.00	1.35	1.35	1.00	1.00	1.00	1.00		
BC	0.45	0.45	0.45	1.00	1.00	1.00	1.00		
ϕt precast to agg	0.90	0.90	0.90	1.00	1.00	1.00	1.00		
ϕt CIP to agg/soil	0.80	0.80	0.80	1.00	1.00	1.00	1.00		
$\phi \mathrm{t}$ soil to soil	0.90	0.90	0.90	1.00	1.00	1.00	1.00		
фt precast to precast	0.90	0.90	0.90	1.00	1.00	1.00	1.00		
concrete interface - eccentricity limit	0.45	0.45	0.45	0.40	0.40	0.45	0.45		
bearing on soil - eccentricity limit	0.33	0.33	0.33	0.40	0.40	0.40	0.33		

